Deviations in energy sensing predict long-term weight change in overweight Native Americans

Energy expenditure (EE), as reflective of body energy demand, has been proposed to be the key driver of food intake, possibly influencing weight change in humans. Variation in this energy-sensing link (overeating relative to weight-maintaining energy requirements) may lead to weight gain over time....

Full description

Saved in:
Bibliographic Details
Published inMetabolism, clinical and experimental Vol. 82; pp. 65 - 71
Main Authors Basolo, Alessio, Votruba, Susanne B., Heinitz, Sascha, Krakoff, Jonathan, Piaggi, Paolo
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Energy expenditure (EE), as reflective of body energy demand, has been proposed to be the key driver of food intake, possibly influencing weight change in humans. Variation in this energy-sensing link (overeating relative to weight-maintaining energy requirements) may lead to weight gain over time. Sixty-one overweight otherwise healthy Native Americans (age: 34.0 ± 7.9 years, body fat: 39.7 ± 9.5%, 36 males) were admitted to our clinical research unit for measurements of body composition by dual-energy X-ray absorptiometry, and 24-h EE and respiratory quotient (RQ) in a whole-room indirect calorimeter during energy balance and weight stability. Following this, ad libitum food intake was assessed for three days using computerized vending machines. Body weight change under unrestricted free-living conditions was assessed at an outpatient follow-up visit (median follow-up time = 1.7 years). Total ad libitum food intake (3-day average) was positively associated with 24-h EE (r = 0.44, p < 0.001), RQ (r = 0.34, p = 0.007), and fat free mass (r = 0.38, p = 0.002). A relatively greater food intake after accounting for 24-h EE, but not for RQ (p = 0.30) or for fat free mass (p = 0.23) nor total food intake (p = 0.16), predicted weight gain at the outpatient follow-up visit (r = 0.26, p = 0.04), such that overeating 100 Kcal/d above the food intake predicted by 24-h EE at baseline was associated with an average weight gain of 0.22 Kg over the follow-up period (95% CI: 0.01 to 0.42 Kg). This was due to relatively greater dietary fat intake (r = 0.32, p = 0.01), but not carbohydrate (p = 0.27) or protein (p = 0.06) intake. The individual propensity to overeating, particularly fat, in excess of the weight-maintaining energy requirements can be assessed and predicts long-term weight gain, suggesting that variation in energy sensing may influence appetite by favoring overeating thus promoting obesity development.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0026-0495
1532-8600
1532-8600
DOI:10.1016/j.metabol.2017.12.013