A Resuscitated Case of Acute Myocardial Infarction with both Familial Hypercholesterolemia Phenotype Caused by Possibly Oligogenic Variants of the PCSK9 and ABCG5 Genes and Type I CD36 Deficiency

A 56-year-old postmenopausal woman with out-of-hospital cardiac arrest caused by acute myocardial infraction was successfully resuscitated by intensive treatments and recovered without any neurological disability. She was diagnosed as having familial hypercholesterolemia (FH) based on a markedly ele...

Full description

Saved in:
Bibliographic Details
Published inJournal of Atherosclerosis and Thrombosis Vol. 29; no. 4; pp. 551 - 557
Main Authors Nishikawa, Ryo, Furuhashi, Masato, Hori, Mika, Ogura, Masatsune, Harada-Shiba, Mariko, Okada, Takeshi, Koseki, Masahiro, Kujiraoka, Takeshi, Hattori, Hiroaki, Ito, Ryosuke, Muranaka, Atsuko, Kokubu, Nobuaki, Miura, Tetsuji
Format Journal Article
LanguageEnglish
Published Japan Japan Atherosclerosis Society 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A 56-year-old postmenopausal woman with out-of-hospital cardiac arrest caused by acute myocardial infraction was successfully resuscitated by intensive treatments and recovered without any neurological disability. She was diagnosed as having familial hypercholesterolemia (FH) based on a markedly elevated low-density lipoprotein cholesterol (LDL-C) level and family history of premature coronary artery disease. Genetic testing in her family members showed that a variant of the proprotein convertase subtilisin/kexin type 9 (PCSK9) gene (c.2004C>A, p.S668R), which had been previously reported as having uncertain significance, was associated with FH, indicating that the variant is a potential candidate for the FH phenotype. Next-generation sequencing analysis for the proband also showed that there was a heterozygous mutation of the ATP-binding cassette sub-family G member 5 ( ABCG5) gene (c.1166G>A, R389H), which has been reported to increase LDL-C level and the risk of cardiovascular disease. She was also diagnosed as having type 1 CD36 deficiency based on a lack of myocardial uptake of 123I-labeled 15-(p-iodophenyl)-3-R,S-methyl-pentadecanoic acid in scintigraphy and the absence of CD36 antigen in both monocytes and platelets in flow cytometry. She had a homozygous mutation of the CD36 gene (c.1126-5_1127delTTTAGAT), which occurs in a canonical splice site (acceptor) and is predicted to disrupt or distort the normal gene product. To our knowledge, this is the first report of a heterozygous FH phenotype caused by possibly oligogenic variants of the PCSK9 and ABCG5 genes complicated with type I CD36 deficiency caused by a novel homozygous mutation. Both FH phenotype and CD36 deficiency might have caused extensive atherosclerosis, leading to acute myocardial infarction in the present case.
Bibliography:ObjectType-Case Study-2
SourceType-Scholarly Journals-1
ObjectType-Feature-4
content type line 23
ObjectType-Report-1
ObjectType-Article-3
ISSN:1340-3478
1880-3873
DOI:10.5551/jat.58909