Integrin Binding Dynamics Modulate Ligand-Specific Mechanosensing in Mammary Gland Fibroblasts

The link between integrin activity regulation and cellular mechanosensing of tissue rigidity, especially on different extracellular matrix ligands, remains poorly understood. Here, we find that primary mouse mammary gland stromal fibroblasts (MSFs) are able to spread efficiently, generate high force...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 23; no. 3; p. 100907
Main Authors Lerche, Martina, Elosegui-Artola, Alberto, Kechagia, Jenny Z., Guzmán, Camilo, Georgiadou, Maria, Andreu, Ion, Gullberg, Donald, Roca-Cusachs, Pere, Peuhu, Emilia, Ivaska, Johanna
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 27.03.2020
Elsevier
Subjects
Online AccessGet full text
ISSN2589-0042
2589-0042
DOI10.1016/j.isci.2020.100907

Cover

Loading…
More Information
Summary:The link between integrin activity regulation and cellular mechanosensing of tissue rigidity, especially on different extracellular matrix ligands, remains poorly understood. Here, we find that primary mouse mammary gland stromal fibroblasts (MSFs) are able to spread efficiently, generate high forces, and display nuclear YAP on soft collagen-coated substrates, resembling the soft mammary gland tissue. We describe that loss of the integrin inhibitor, SHARPIN, impedes MSF spreading specifically on soft type I collagen but not on fibronectin. Through quantitative experiments and computational modeling, we find that SHARPIN-deficient MSFs display faster force-induced unbinding of adhesions from collagen-coated beads. Faster unbinding, in turn, impairs force transmission in these cells, particularly, at the stiffness optimum observed for wild-type cells. Mechanistically, we link the impaired mechanotransduction of SHARPIN-deficient cells on collagen to reduced levels of collagen-binding integrin α11β1. Thus integrin activity regulation and α11β1 play a role in collagen-specific mechanosensing in MSFs. [Display omitted] •Mammary gland stromal fibroblasts are mechanically adapted to a soft environment•Loss of SHARPIN reduces cell spreading and force generation on soft collagen•Low integrin α11β1 level in SHARPIN-null cells causes faster unbinding from collagen•Molecular clutch model predicts the lower forces based on faster integrin unbinding Biological Sciences; Cell Biology; Functional Aspects of Cell Biology
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Lead Contact
ISSN:2589-0042
2589-0042
DOI:10.1016/j.isci.2020.100907