Protocol for comprehensive RNA sequencing analysis of murine long non-coding RNAs during aging

Comprehensive analyses of lncRNAs in aging have been lacking because previous studies have mainly focused on the protein-coding genes during aging. Here, we describe a protocol for the organism-wide analysis of murine lncRNAs during aging. We provide step-by-step instructions to identify lncRNAs tha...

Full description

Saved in:
Bibliographic Details
Published inSTAR protocols Vol. 2; no. 2; p. 100397
Main Authors Lu, Xinyue, Zhou, Qiuzhong, Liu, Jin, Sun, Lei
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 18.06.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Comprehensive analyses of lncRNAs in aging have been lacking because previous studies have mainly focused on the protein-coding genes during aging. Here, we describe a protocol for the organism-wide analysis of murine lncRNAs during aging. We provide step-by-step instructions to identify lncRNAs that contribute to aging and to determine their underlying functions in each tissue. We further describe methods to compare the lncRNA expression patterns and dynamic changes among multiple tissues. For complete details on the use and execution of this protocol, please refer to Zhou et al. (2020). [Display omitted] •Differential gene expression and aging-regulated lncRNA identification•Functional annotation specific for lncRNAs•Tissue-specific analysis for aging-regulated lncRNA Comprehensive analyses of lncRNAs in aging have been lacking because previous studies have mainly focused on the protein-coding genes during aging. Here, we describe a protocol for the organism-wide analysis of murine lncRNAs during aging. We provide step-by-step instructions to identify lncRNAs that contribute to aging and to determine their underlying functions in each tissue. We further describe methods to compare the lncRNA expression patterns and dynamic changes among multiple tissues.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Technical contact
These authors contributed equally
Lead contact
ISSN:2666-1667
2666-1667
DOI:10.1016/j.xpro.2021.100397