Comparison of Circulating Biomarkers in Predicting Diabetic Kidney Disease Progression With Autoantibodies to Erythropoietin Receptor

Several circulating markers, including autoantibodies to erythropoietin receptor (anti-EPOR antibodies), have been identified as useful biomarkers in predicting diabetic kidney disease progression. However, a direct comparison of their utility is lacking. We aimed to validate and to compare the prog...

Full description

Saved in:
Bibliographic Details
Published inKidney international reports Vol. 6; no. 2; pp. 284 - 295
Main Authors Oshima, Megumi, Hara, Akinori, Toyama, Tadashi, Jun, Min, Pollock, Carol, Jardine, Meg, Harrap, Stephen, Poulter, Neil, Cooper, Mark E., Woodward, Mark, Chalmers, John, Perkovic, Vlado, Wong, Muh Geot, Wada, Takashi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Several circulating markers, including autoantibodies to erythropoietin receptor (anti-EPOR antibodies), have been identified as useful biomarkers in predicting diabetic kidney disease progression. However, a direct comparison of their utility is lacking. We aimed to validate and to compare the prognostic value of anti-EPOR antibodies with that of other known biomarkers, using the ADVANCE trial and its long-term follow-up, ADVANCE-ON, cohorts. In this nested case-control study from the ADVANCE trial cohort, we included 165 case participants who had the composite kidney outcome (renal replacement therapy, renal death, or doubling of serum creatinine to ≥200 μmol/l) and 330 matched controls. We compared the associations of baseline plasma levels of anti-EPOR antibodies, tumor necrosis factor receptor (TNFR)-1 and -2, and bone morphogenetic protein (BMP)-7 with kidney outcomes. Cases had higher baseline plasma levels of anti-EPOR antibodies than controls (median 1.7 vs. 0.6 enzyme-linked immunosorbent assay unit, P < 0.001). Higher levels of anti-EPOR antibodies were associated with an increased risk of kidney outcome (odds ratio 2.16 [95% confidence interval 1.51, 3.08], per 1 SD of log-transformed levels) after adjusting for conventional markers. Elevated circulating TNFR1 and TNFR2 levels, and lower BMP-7 levels at baseline, were associated with poor kidney outcome (odds ratios 2.06 [1.29, 3.30], 1.66 [1.13, 2.43], and 0.45 [0.32, 0.65], respectively). The addition of anti-EPOR antibodies into the model improved the prediction of kidney outcome, regardless of other biomarkers. Anti-EPOR antibodies provide a promising biomarker, as with TNFR1, TNFR2, and BMP-7, in predicting kidney disease progression in people with type 2 diabetes mellitus. [Display omitted]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2468-0249
2468-0249
DOI:10.1016/j.ekir.2020.10.039