Degradable PE-Based Copolymer with Controlled Ester Structure Incorporation by Cobalt-Mediated Radical Copolymerization under Mild Condition
Polyethylene (PE) is one of the most widely used materials in the world, but it is virtually undegradable and quickly accumulates in nature, which may contaminate the environment. We utilized the cobalt-mediated radical copolymerization (CMRP) of ethylene and cyclic ketene acetals (CKAs) to effectiv...
Saved in:
Published in | iScience Vol. 23; no. 3; p. 100904 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
27.03.2020
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Polyethylene (PE) is one of the most widely used materials in the world, but it is virtually undegradable and quickly accumulates in nature, which may contaminate the environment. We utilized the cobalt-mediated radical copolymerization (CMRP) of ethylene and cyclic ketene acetals (CKAs) to effectively incorporate ester groups into PE backbone as cleavable structures to make PE-based copolymer degradable under mild conditions. The content of ethylene and ester units in the produced copolymer could be finely regulated by CKA concentration or ethylene pressure. Also, the copolymerization of ethylene and CKA with other functional vinyl monomers can produce functional and degradable PE-based copolymer. All the formed PE-based copolymers could degrade in the presence of trimethylamine (Et3N).
[Display omitted]
•We report cobalt-mediated copolymerization for inserting ester unit into PE backbone•The molecular weight of degraded product varied from several hundreds to thousands•This method provides access to a diverse range of degradable functional PE materials
Green Chemistry; Organic Chemistry; Polymers |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Lead Contact |
ISSN: | 2589-0042 2589-0042 |
DOI: | 10.1016/j.isci.2020.100904 |