Current Advances of Polymer Composites for Water Treatment and Desalination

Over the past five years, a lot of research activities in polymer composites were done in order to improve environmental sustainability and to present advantages for commercial applications of water treatment and desalination. Polymers offered tunable properties, improved processability, remarkable...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemistry Vol. 2020; no. 2020; pp. 1 - 19
Main Author Berber, Mohamed R.
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
John Wiley & Sons, Inc
Hindawi Limited
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Over the past five years, a lot of research activities in polymer composites were done in order to improve environmental sustainability and to present advantages for commercial applications of water treatment and desalination. Polymers offered tunable properties, improved processability, remarkable stability, high surface area for fast decontamination, selectivity to eliminate different pollutants, and cost-cutting of water treatment. Hence, the development of polymeric materials is one of the future directions to meet the environmental water standards and to supply the water requirements of the growing populations. This review highlighted the very recent achievements in fabrication, characterization, and applications of polymeric composites used for water treatment and desalination. The polymeric modifications, the addition of functional groups, and the assemblies of nanomaterials were also discussed in detail. In particular, great attention was paid to the recent advances in polymer/polymer composites, polymer/carbon composites, and polymer/clay composites, presenting their usage in the removal of various types of contaminants, e.g., metal ions, dyes, and other toxic pollutants. The review also summarized the main advantages and disadvantages of the different adsorbent materials. Specific attention was paid to the mechanism of adsorption, including chemisorption and physisorption mechanisms. In addition, the challenges and the future perspectives were identified to reach the optimal performance of the different adsorbents.
ISSN:2090-9063
2090-9071
DOI:10.1155/2020/7608423