On the analysis of number of deaths due to Covid −19 outbreak data using a new class of distributions
In this article, we develop a generator to suggest a generalization of the Gumbel type-II model known as generalized log-exponential transformation of Gumbel Type-II (GLET-GTII), which extends a more flexible model for modeling life data. Owing to basic transformation containing an extra parameter,...
Saved in:
Published in | Results in physics Vol. 21; p. 103747 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.02.2021
The Authors. Published by Elsevier B.V Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this article, we develop a generator to suggest a generalization of the Gumbel type-II model known as generalized log-exponential transformation of Gumbel Type-II (GLET-GTII), which extends a more flexible model for modeling life data. Owing to basic transformation containing an extra parameter, every existing lifetime model can be made more flexible with suggested development. Some specific statistical attributes of the GLET-GTII are investigated, such as quantiles, uncertainty measures, survival function, moments, reliability, and hazard function etc. We describe two methods of parametric estimations of GLET-GTII discussed by using maximum likelihood estimators and Bayesian paradigm. The Monte Carlo simulation analysis shows that estimators are consistent. Two real life implementations are performed to scrutinize the suitability of our current strategy. These real life data is related to Infectious diseases (COVID-19). These applications identify that by using the current approach, our proposed model outperforms than other well known existing models available in the literature. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2211-3797 2211-3797 |
DOI: | 10.1016/j.rinp.2020.103747 |