On the analysis of number of deaths due to Covid −19 outbreak data using a new class of distributions

In this article, we develop a generator to suggest a generalization of the Gumbel type-II model known as generalized log-exponential transformation of Gumbel Type-II (GLET-GTII), which extends a more flexible model for modeling life data. Owing to basic transformation containing an extra parameter,...

Full description

Saved in:
Bibliographic Details
Published inResults in physics Vol. 21; p. 103747
Main Authors Sindhu, Tabassum Naz, Shafiq, Anum, Al-Mdallal, Qasem M.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.02.2021
The Authors. Published by Elsevier B.V
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, we develop a generator to suggest a generalization of the Gumbel type-II model known as generalized log-exponential transformation of Gumbel Type-II (GLET-GTII), which extends a more flexible model for modeling life data. Owing to basic transformation containing an extra parameter, every existing lifetime model can be made more flexible with suggested development. Some specific statistical attributes of the GLET-GTII are investigated, such as quantiles, uncertainty measures, survival function, moments, reliability, and hazard function etc. We describe two methods of parametric estimations of GLET-GTII discussed by using maximum likelihood estimators and Bayesian paradigm. The Monte Carlo simulation analysis shows that estimators are consistent. Two real life implementations are performed to scrutinize the suitability of our current strategy. These real life data is related to Infectious diseases (COVID-19). These applications identify that by using the current approach, our proposed model outperforms than other well known existing models available in the literature.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2211-3797
2211-3797
DOI:10.1016/j.rinp.2020.103747