KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation

Pre-trained language representation models (PLMs) cannot well capture factual knowledge from text. In contrast, knowledge embedding (KE) methods can effectively represent the relational facts in knowledge graphs (KGs) with informative entity embeddings, but conventional KE models cannot take full ad...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the Association for Computational Linguistics Vol. 9; pp. 176 - 194
Main Authors Wang, Xiaozhi, Gao, Tianyu, Zhu, Zhaocheng, Zhang, Zhengyan, Liu, Zhiyuan, Li, Juanzi, Tang, Jian
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.01.2021
MIT Press Journals, The
The MIT Press
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pre-trained language representation models (PLMs) cannot well capture factual knowledge from text. In contrast, knowledge embedding (KE) methods can effectively represent the relational facts in knowledge graphs (KGs) with informative entity embeddings, but conventional KE models cannot take full advantage of the abundant textual information. In this paper, we propose a unified model for nowledge mbedding and re-trained anguag epresentation ( ), which can not only better integrate factual knowledge into PLMs but also produce effective text-enhanced KE with the strong PLMs. In KEPLER, we encode textual entity descriptions with a PLM as their embeddings, and then jointly optimize the KE and language modeling objectives. Experimental results show that KEPLER achieves state-of-the-art performances on various NLP tasks, and also works remarkably well as an inductive KE model on KG link prediction. Furthermore, for pre-training and evaluating KEPLER, we construct Wikidata5M , a large-scale KG dataset with aligned entity descriptions, and benchmark state-of-the-art KE methods on it. It shall serve as a new KE benchmark and facilitate the research on large KG, inductive KE, and KG with text. The source code can be obtained from .
Bibliography:Volume 9, 2021
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2307-387X
2307-387X
DOI:10.1162/tacl_a_00360