Effects of Bamboo Leaf Fiber Content on Cushion Performance and Biodegradability of Natural Rubber Latex Foam Composites
Bamboo leaf fiber (BLF) was incorporated into an eco-friendly foam cushion made from natural rubber latex (NRL) to enhance the biodegradation rate. The objective of this work was to investigate the effects of BLF content on the foam structure, mechanical properties, cushion performance, and biodegra...
Saved in:
Published in | Polymers Vol. 15; no. 3; p. 654 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
27.01.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Bamboo leaf fiber (BLF) was incorporated into an eco-friendly foam cushion made from natural rubber latex (NRL) to enhance the biodegradation rate. The objective of this work was to investigate the effects of BLF content on the foam structure, mechanical properties, cushion performance, and biodegradability. The NRL foam cushion nets with and without BLF were prepared using the Dunlop method along with microwave-assisted vulcanization. BLF (90-106 µm in length) at various loadings (0.00, 2.50, 5.00, 7.50, and 10.00 phr) were introduced to the latex compounds before gelling and vulcanizing steps. Scanning electron microscopy (SEM) showed that the BLF in a NRL foam caused an increase in cell size and a decrease in the number of cells. The changes in the cell structure and number of cells resulted in increases in the bulk density, hardness, compression set, compressive strength, and cushion coefficient. A soil burial test of 24 weeks revealed faster weight loss of 1.8 times when the BLF content was 10.00 phr as compared to the NRL foam without BLF. The findings of this work suggest the possibility of developing an eco-friendly cushion with a faster degradation rate while maintaining cushion performance, which could be a better alternative for sustainable packaging in the future. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym15030654 |