scBiG for representation learning of single-cell gene expression data based on bipartite graph embedding
Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionality, sparsity and technical noise. Recognizing the benefits of dimensionality reduction in simplifying complexity and enhancing the signal-to-noise ratio, we introduce scBiG, a novel graph node embed...
Saved in:
Published in | NAR genomics and bioinformatics Vol. 6; no. 1; p. lqae004 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2631-9268 2631-9268 |
DOI | 10.1093/nargab/lqae004 |
Cover
Loading…
Abstract | Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionality, sparsity and technical noise. Recognizing the benefits of dimensionality reduction in simplifying complexity and enhancing the signal-to-noise ratio, we introduce scBiG, a novel graph node embedding method designed for representation learning in scRNA-seq data. scBiG establishes a bipartite graph connecting cells and expressed genes, and then constructs a multilayer graph convolutional network to learn cell and gene embeddings. Through a series of extensive experiments, we demonstrate that scBiG surpasses commonly used dimensionality reduction techniques in various analytical tasks. Downstream tasks encompass unsupervised cell clustering, cell trajectory inference, gene expression reconstruction and gene co-expression analysis. Additionally, scBiG exhibits notable computational efficiency and scalability. In summary, scBiG offers a useful graph neural network framework for representation learning in scRNA-seq data, empowering a diverse array of downstream analyses. |
---|---|
AbstractList | Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionality, sparsity and technical noise. Recognizing the benefits of dimensionality reduction in simplifying complexity and enhancing the signal-to-noise ratio, we introduce scBiG, a novel graph node embedding method designed for representation learning in scRNA-seq data. scBiG establishes a bipartite graph connecting cells and expressed genes, and then constructs a multilayer graph convolutional network to learn cell and gene embeddings. Through a series of extensive experiments, we demonstrate that scBiG surpasses commonly used dimensionality reduction techniques in various analytical tasks. Downstream tasks encompass unsupervised cell clustering, cell trajectory inference, gene expression reconstruction and gene co-expression analysis. Additionally, scBiG exhibits notable computational efficiency and scalability. In summary, scBiG offers a useful graph neural network framework for representation learning in scRNA-seq data, empowering a diverse array of downstream analyses. Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionality, sparsity and technical noise. Recognizing the benefits of dimensionality reduction in simplifying complexity and enhancing the signal-to-noise ratio, we introduce scBiG, a novel graph node embedding method designed for representation learning in scRNA-seq data. scBiG establishes a bipartite graph connecting cells and expressed genes, and then constructs a multilayer graph convolutional network to learn cell and gene embeddings. Through a series of extensive experiments, we demonstrate that scBiG surpasses commonly used dimensionality reduction techniques in various analytical tasks. Downstream tasks encompass unsupervised cell clustering, cell trajectory inference, gene expression reconstruction and gene co-expression analysis. Additionally, scBiG exhibits notable computational efficiency and scalability. In summary, scBiG offers a useful graph neural network framework for representation learning in scRNA-seq data, empowering a diverse array of downstream analyses.Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionality, sparsity and technical noise. Recognizing the benefits of dimensionality reduction in simplifying complexity and enhancing the signal-to-noise ratio, we introduce scBiG, a novel graph node embedding method designed for representation learning in scRNA-seq data. scBiG establishes a bipartite graph connecting cells and expressed genes, and then constructs a multilayer graph convolutional network to learn cell and gene embeddings. Through a series of extensive experiments, we demonstrate that scBiG surpasses commonly used dimensionality reduction techniques in various analytical tasks. Downstream tasks encompass unsupervised cell clustering, cell trajectory inference, gene expression reconstruction and gene co-expression analysis. Additionally, scBiG exhibits notable computational efficiency and scalability. In summary, scBiG offers a useful graph neural network framework for representation learning in scRNA-seq data, empowering a diverse array of downstream analyses. |
Author | Li, Ting Wang, Xiang Li, Wei Vivian Qian, Kun Li, Hongwei |
Author_xml | – sequence: 1 givenname: Ting surname: Li fullname: Li, Ting email: hwli@cug.edu.cn – sequence: 2 givenname: Kun surname: Qian fullname: Qian, Kun – sequence: 3 givenname: Xiang surname: Wang fullname: Wang, Xiang – sequence: 4 givenname: Wei Vivian orcidid: 0000-0002-2087-2709 surname: Li fullname: Li, Wei Vivian email: hwli@cug.edu.cn – sequence: 5 givenname: Hongwei surname: Li fullname: Li, Hongwei email: hwli@cug.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38288376$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1rFTEUxYNUbK3dupSAG11Mm49JXmYlWmoVCm50HfJx37yUeck0mRH975thXqUWRLK4Cfmdw7mcl-gopggIvabknJKOX0STe2MvhjsDhLTP0AmTnDYdk-ro0f0YnZVySwhhohUtoS_QMVdMKb6RJ2hX3Kdwjbcp4wxjhgJxMlNIEQ9gcgyxx2mLS50DNA6GAfcQAcOvhS0L581ksDUFPK4vG0aTpzAB7rMZdxj2Fryv8lfo-dYMBc4O8xT9-Hz1_fJLc_Pt-uvlx5vGCUamxlrZghOq6yx3spUb8Mp556lwVkgPXZ1s-VXMcEI9CAJEGGakYy13lp-iD6vvONs9eFf3yWbQYw57k3_rZIL--yeGne7TT02JYlwoUR3eHRxyupuhTHofyrK6iZDmolnHCFUdkZuKvn2C3qY5x7qf5nRDunr4Qr15HOlPlocWKtCugMuplAxb7cLaQk0YhhpNL33rtW996LvKzp_IHpz_KXi_CtI8_o-9B1oNwEg |
CitedBy_id | crossref_primary_10_1002_qub2_85 crossref_primary_10_1093_bib_bbae538 |
Cites_doi | 10.1186/s13059-015-0805-z 10.1038/s41592-018-0229-2 10.1186/s13059-019-1898-6 10.1038/nbt.3192 10.1016/j.coisb.2021.05.008 10.3389/fgene.2021.646936 10.1145/3038912.3052569 10.1038/s41467-021-27729-z 10.21105/joss.00861 10.1126/science.aat1699 10.1039/C3AY41907J 10.1038/s41586-019-1652-y 10.1609/aaai.v32i1.11604 10.1007/978-1-4842-5364-9_2 10.1186/s12864-018-4772-0 10.1186/s13059-017-1305-0 10.1038/nri.2017.76 10.1186/1752-0509-1-54 10.1093/nar/gky900 10.1186/s13059-017-1382-0 10.1093/bioinformatics/18.1.51 10.1038/ncomms14049 10.1016/j.knosys.2018.03.022 10.1038/nsmb.2660 10.1016/j.cell.2015.04.044 10.1038/s41587-019-0071-9 10.1145/3397271.3401063 10.1016/j.cell.2018.02.001 10.1088/1742-5468/2008/10/P10008 10.1186/s13059-023-02850-y 10.1038/s41592-019-0576-7 10.1126/science.1245316 10.1093/nar/gkw430 10.1016/j.cell.2015.05.002 10.1038/s41586-018-0590-4 10.1093/bioinformatics/btz078 10.1038/s41467-018-03405-7 10.1093/bioinformatics/btr260 10.1038/s41598-021-99003-7 10.1038/s41467-018-07931-2 10.1038/s41467-021-22197-x 10.1016/j.cels.2016.08.011 10.1016/j.cell.2018.05.061 10.1093/bioinformatics/btab787 |
ContentType | Journal Article |
Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. – notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | TOX AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1093/nargab/lqae004 |
DatabaseName | Oxford Journals Open Access Collection (WRLC) CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea ProQuest Central Student ProQuest SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2631-9268 |
ExternalDocumentID | PMC10823585 38288376 10_1093_nargab_lqae004 10.1093/nargab/lqae004 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: R35GM142702 – fundername: ; grantid: 42274172 |
GroupedDBID | 0R~ 53G AAFWJ AAPXW AAVAP ABEJV ABGNP ABPTD ABXVV AFPKN AFULF ALMA_UNASSIGNED_HOLDINGS AMNDL EBS EMOBN GROUPED_DOAJ IAO IGS IHR INH ITC KSI M~E ROX RPM TOX AAYXX AFKRA BBNVY BENPR BHPHI CCPQU CITATION HCIFZ M7P PHGZM PHGZT PIMPY NPM PQGLB 8FE 8FH ABUWG AZQEC DWQXO GNUQQ LK8 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c520t-bb64ec5899b3c6467ed8cdcd15cb56de95cb2899b82a301de50e05a2a6c243cb3 |
IEDL.DBID | BENPR |
ISSN | 2631-9268 |
IngestDate | Thu Aug 21 18:36:03 EDT 2025 Thu Jul 10 17:14:47 EDT 2025 Fri Jul 25 11:46:25 EDT 2025 Mon Jul 21 06:07:19 EDT 2025 Tue Jul 01 02:50:16 EDT 2025 Thu Apr 24 23:02:21 EDT 2025 Thu Jan 30 13:18:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com https://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c520t-bb64ec5899b3c6467ed8cdcd15cb56de95cb2899b82a301de50e05a2a6c243cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The first two authors should be regarded as Joint First Authors. |
ORCID | 0000-0002-2087-2709 |
OpenAccessLink | https://www.proquest.com/docview/3170909037?pq-origsite=%requestingapplication% |
PMID | 38288376 |
PQID | 3170909037 |
PQPubID | 7097362 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10823585 proquest_miscellaneous_2920189067 proquest_journals_3170909037 pubmed_primary_38288376 crossref_citationtrail_10_1093_nargab_lqae004 crossref_primary_10_1093_nargab_lqae004 oup_primary_10_1093_nargab_lqae004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | NAR genomics and bioinformatics |
PublicationTitleAlternate | NAR Genom Bioinform |
PublicationYear | 2024 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Eraslan (2024052805581462300_B7) 2019; 10 Hetzel (2024052805581462300_B17) 2021; 28 Saelens (2024052805581462300_B45) 2019; 37 Goyal (2024052805581462300_B11) 2018; 151 Zheng (2024052805581462300_B33) 2017; 8 Macosko (2024052805581462300_B35) 2015; 161 Yan (2024052805581462300_B36) 2013; 20 Choi (2024052805581462300_B16) 2023; 24 Satija (2024052805581462300_B25) 2015; 33 Papadopoulos (2024052805581462300_B38) 2019; 35 Liberzon (2024052805581462300_B48) 2011; 27 Chen (2024052805581462300_B15) 2023 Zappia (2024052805581462300_B41) 2017; 18 Baron (2024052805581462300_B29) 2016; 3 Xiang (2024052805581462300_B2) 2021; 12 McInnes (2024052805581462300_B43) 2018; 3 Liebermeister (2024052805581462300_B5) 2002; 18 Sun (2024052805581462300_B3) 2019; 20 Deng (2024052805581462300_B37) 2014; 343 Young (2024052805581462300_B34) 2018; 361 Lopez (2024052805581462300_B9) 2018; 15 Li (2024052805581462300_B27) 2018; 9 Han (2024052805581462300_B31) 2018; 172 Blondel (2024052805581462300_B42) 2008; 2008 Street (2024052805581462300_B44) 2018; 19 Amodio (2024052805581462300_B8) 2019; 16 Wolf (2024052805581462300_B22) 2018; 19 Schaum (2024052805581462300_B40) 2018; 562 He (2024052805581462300_B19) 2020 Linderman (2024052805581462300_B28) 2022; 9 Langfelder (2024052805581462300_B47) 2007; 1 He (2024052805581462300_B21) 2017 Wang (2024052805581462300_B13) 2021; 12 Ciortan (2024052805581462300_B14) 2022; 38 Kingma (2024052805581462300_B24) 2015 Li (2024052805581462300_B20) 2018 Pierson (2024052805581462300_B6) 2015; 16 Luo (2024052805581462300_B10) 2021; 11 Ji (2024052805581462300_B46) 2016; 44 Adam (2024052805581462300_B32) 2017; 144 Popescu (2024052805581462300_B39) 2019; 574 Bro (2024052805581462300_B4) 2014; 6 Kipf (2024052805581462300_B18) 2017 Van Dijk (2024052805581462300_B26) 2018; 174 Wu (2024052805581462300_B12) 2022; 55 Ketkar (2024052805581462300_B23) 2021 Papalexi (2024052805581462300_B1) 2018; 18 Klein (2024052805581462300_B30) 2015; 161 Zhang (2024052805581462300_B49) 2019; 47 |
References_xml | – volume: 16 start-page: 1 year: 2015 ident: 2024052805581462300_B6 article-title: ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis publication-title: Genome Biol. doi: 10.1186/s13059-015-0805-z – volume: 15 start-page: 1053 year: 2018 ident: 2024052805581462300_B9 article-title: Deep generative modeling for single-cell transcriptomics publication-title: Nat. Methods doi: 10.1038/s41592-018-0229-2 – volume: 20 start-page: 1 year: 2019 ident: 2024052805581462300_B3 article-title: Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis publication-title: Genome Biol. doi: 10.1186/s13059-019-1898-6 – volume: 33 start-page: 495 year: 2015 ident: 2024052805581462300_B25 article-title: Spatial reconstruction of single-cell gene expression data publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3192 – volume: 28 start-page: 100347 year: 2021 ident: 2024052805581462300_B17 article-title: Graph representation learning for single-cell biology publication-title: Curr. Opin. Syst. Biol. doi: 10.1016/j.coisb.2021.05.008 – volume-title: International Conference on Learning Representations year: 2015 ident: 2024052805581462300_B24 article-title: Adam: a method for stochastic optimization – volume: 12 start-page: 646936 year: 2021 ident: 2024052805581462300_B2 article-title: A comparison for dimensionality reduction methods of single-cell RNA-seq data publication-title: Front. Genet. doi: 10.3389/fgene.2021.646936 – start-page: 173 volume-title: Proceedings of the 26th International Conference on World Wide Web,Perth, Australia year: 2017 ident: 2024052805581462300_B21 article-title: Neural collaborative filtering doi: 10.1145/3038912.3052569 – volume: 9 start-page: 192 year: 2022 ident: 2024052805581462300_B28 article-title: Zero-preserving imputation of scRNA-seq data using low-rank approximation publication-title: Nat. Commun. doi: 10.1038/s41467-021-27729-z – volume: 3 start-page: 861 year: 2018 ident: 2024052805581462300_B43 article-title: UMAP: Uniform Manifold Approximation and Projection publication-title: J. Open Source Softw. doi: 10.21105/joss.00861 – volume: 361 start-page: 594 year: 2018 ident: 2024052805581462300_B34 article-title: Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors publication-title: Science doi: 10.1126/science.aat1699 – volume: 6 start-page: 2812 year: 2014 ident: 2024052805581462300_B4 article-title: Principal component analysis publication-title: Anal. Methods doi: 10.1039/C3AY41907J – volume: 574 start-page: 365 year: 2019 ident: 2024052805581462300_B39 article-title: Decoding human fetal liver haematopoiesis publication-title: Nature doi: 10.1038/s41586-019-1652-y – volume-title: Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA year: 2018 ident: 2024052805581462300_B20 article-title: Deeper insights into graph convolutional networks for semi-supervised learning doi: 10.1609/aaai.v32i1.11604 – start-page: 27 volume-title: Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch year: 2021 ident: 2024052805581462300_B23 article-title: Introduction to PyTorch doi: 10.1007/978-1-4842-5364-9_2 – volume: 19 start-page: 477 year: 2018 ident: 2024052805581462300_B44 article-title: Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics publication-title: BMC Genomics doi: 10.1186/s12864-018-4772-0 – volume: 18 start-page: 174 year: 2017 ident: 2024052805581462300_B41 article-title: Splatter: simulation of single-cell RNA sequencing data publication-title: Genome Biol. doi: 10.1186/s13059-017-1305-0 – volume: 18 start-page: 35 year: 2018 ident: 2024052805581462300_B1 article-title: Single-cell RNA sequencing to explore immune cell heterogeneity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2017.76 – volume: 1 start-page: 1 year: 2007 ident: 2024052805581462300_B47 article-title: Eigengene networks for studying the relationships between co-expression modules publication-title: BMC Syst. Biol. doi: 10.1186/1752-0509-1-54 – volume: 47 start-page: D721 year: 2019 ident: 2024052805581462300_B49 article-title: CellMarker: a manually curated resource of cell markers in human and mouse publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky900 – volume: 55 start-page: 1 year: 2022 ident: 2024052805581462300_B12 article-title: Graph neural networks in recommender systems: a survey publication-title: ACM Comput. Surv. – volume: 19 start-page: 15 year: 2018 ident: 2024052805581462300_B22 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 – volume: 18 start-page: 51 year: 2002 ident: 2024052805581462300_B5 article-title: Linear modes of gene expression determined by independent component analysis publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.1.51 – year: 2023 ident: 2024052805581462300_B15 article-title: SIMBA: single-cell embedding along with features publication-title: Nat. Methods – volume: 8 start-page: 14049 year: 2017 ident: 2024052805581462300_B33 article-title: Massively parallel digital transcriptional profiling of single cells publication-title: Nat. Commun. doi: 10.1038/ncomms14049 – volume: 151 start-page: 78 year: 2018 ident: 2024052805581462300_B11 article-title: Graph embedding techniques, applications, and performance: a survey publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.03.022 – volume: 20 start-page: 1131 year: 2013 ident: 2024052805581462300_B36 article-title: Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2660 – volume: 161 start-page: 1187 year: 2015 ident: 2024052805581462300_B30 article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – volume: 37 start-page: 547 year: 2019 ident: 2024052805581462300_B45 article-title: A comparison of single-cell trajectory inference methods publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0071-9 – volume-title: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi'an, China year: 2020 ident: 2024052805581462300_B19 article-title: LightGCN: simplifying and powering graph convolution network for recommendation doi: 10.1145/3397271.3401063 – volume: 172 start-page: 1091 year: 2018 ident: 2024052805581462300_B31 article-title: Mapping the mouse cell atlas by Microwell-seq publication-title: Cell doi: 10.1016/j.cell.2018.02.001 – volume-title: International Conference on Learning Representations year: 2017 ident: 2024052805581462300_B18 article-title: Semi-supervised classification with graph convolutional networks – volume: 144 start-page: 3625 year: 2017 ident: 2024052805581462300_B32 article-title: Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development publication-title: Development – volume: 2008 start-page: P10008 year: 2008 ident: 2024052805581462300_B42 article-title: Fast unfolding of communities in large networks publication-title: J. Stat. Mech. Theor. Exp. doi: 10.1088/1742-5468/2008/10/P10008 – volume: 24 start-page: 29 year: 2023 ident: 2024052805581462300_B16 article-title: siVAE: interpretable deep generative models for single-cell transcriptomes publication-title: Genome Biol. doi: 10.1186/s13059-023-02850-y – volume: 16 start-page: 1139 year: 2019 ident: 2024052805581462300_B8 article-title: Exploring single-cell data with deep multitasking neural networks publication-title: Nat. Methods doi: 10.1038/s41592-019-0576-7 – volume: 343 start-page: 193 year: 2014 ident: 2024052805581462300_B37 article-title: Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells publication-title: Science doi: 10.1126/science.1245316 – volume: 44 start-page: e117 year: 2016 ident: 2024052805581462300_B46 article-title: TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw430 – volume: 161 start-page: 1202 year: 2015 ident: 2024052805581462300_B35 article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets publication-title: Cell doi: 10.1016/j.cell.2015.05.002 – volume: 562 start-page: 367 year: 2018 ident: 2024052805581462300_B40 article-title: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris: The Tabula Muris Consortium publication-title: Nature doi: 10.1038/s41586-018-0590-4 – volume: 35 start-page: 3517 year: 2019 ident: 2024052805581462300_B38 article-title: PROSSTT: probabilistic simulation of single-cell RNA-seq data for complex differentiation processes publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz078 – volume: 9 start-page: 997 year: 2018 ident: 2024052805581462300_B27 article-title: An accurate and robust imputation method scImpute for single-cell RNA-seq data publication-title: Nat. Commun. doi: 10.1038/s41467-018-03405-7 – volume: 27 start-page: 1739 year: 2011 ident: 2024052805581462300_B48 article-title: Molecular Signatures Database (MSigDB) 3.0 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr260 – volume: 11 start-page: 20028 year: 2021 ident: 2024052805581462300_B10 article-title: A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder publication-title: Sci. Rep. doi: 10.1038/s41598-021-99003-7 – volume: 10 start-page: 390 year: 2019 ident: 2024052805581462300_B7 article-title: Single-cell RNA-seq denoising using a deep count autoencoder publication-title: Nat. Commun. doi: 10.1038/s41467-018-07931-2 – volume: 12 start-page: 1882 year: 2021 ident: 2024052805581462300_B13 article-title: scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses publication-title: Nat. Commun. doi: 10.1038/s41467-021-22197-x – volume: 3 start-page: 346 year: 2016 ident: 2024052805581462300_B29 article-title: A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure publication-title: Cell Syst. doi: 10.1016/j.cels.2016.08.011 – volume: 174 start-page: 716 year: 2018 ident: 2024052805581462300_B26 article-title: Recovering gene interactions from single-cell data using data diffusion publication-title: Cell doi: 10.1016/j.cell.2018.05.061 – volume: 38 start-page: 1037 year: 2022 ident: 2024052805581462300_B14 article-title: GNN-based embedding for clustering scRNA-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab787 |
SSID | ssj0002545401 |
Score | 2.2631016 |
Snippet | Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionality, sparsity and technical noise. Recognizing the... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | lqae004 |
SubjectTerms | Bioinformatics Cells Correspondence Editor's Choice Embedding Gene expression Genomics Learning Methods Neural networks |
Title | scBiG for representation learning of single-cell gene expression data based on bipartite graph embedding |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38288376 https://www.proquest.com/docview/3170909037 https://www.proquest.com/docview/2920189067 https://pubmed.ncbi.nlm.nih.gov/PMC10823585 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA-6vfgiil_VOaIIPpW16cfaJ3HiHIJTZIO9lSa9usHsppvgn-9dm9ZNUF9aStK05C73lcv9GLsIlO9IJW0ztQAdFCWkGUoB6KqEsYAQX5J0OPmh7_eG7v3IG-mA20KnVZYyMRfUyUxRjLyFes4KKajQvpq_mYQaRburGkJjk9VRBAfofNU7t_2n5yrKgu4PmiR2Va3RaWWEHytb07cYLI3OVmqjtRNuK4bmz3zJFQXU3WHb2nLk1wWpd9kGZHtsvFCdyR1Hy5Pn5SnLo0QZ13AQL3yWcooHTMGkID1HhgEOnzr_NeOUIspJlyUcn-RkTry0BJ5XsubwKiEh9bbPht3bwU3P1OAJpvKEtTSl9F1QHrpT0lE-ikMgnCKV2J6Snp9AiHdytmQgYlzkCXgWWF4sYl8J11HSOWC1bJbBEeNBImicMEhTx3UV2hR-W6Xk2sQWDqYMZpaTGCldWZwALqZRscPtRMWkR3rSDXZZ9Z8XNTV-7XmONPm3U6MkWaQX4CL6ZheDnVXNuHRoquMMZh-LiIC67CBEfW2ww4LC1aecgGCY277BgjXaVx2oLPd6SzYZ5-W5bdq8RC_s-O__OmFbAg2kIp-twWrL9w84RQNnKZuai5t5gACvg8fRF_EcBIU |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6V7gFeJhAbhA0wExNPURM7SZMHNDHW0rKtQmiT9hZi58IqdWm3dgL-1H4jd42TrUjA056iKI4T3Z1999nn-wDexiZS2mjfLTwkgGKkdhMtkaBKkklM6CXNh5OPR9HgNPh8Fp614KY-C8NplfWcuJyo86nhNfIO-Tkv4UWF7t7s0mXWKN5drSk0KrM4xF8_CLLN3w8PSL-7UvZ7Jx8HrmUVcE0ovYWrdRSgCQlnaGUimieQCXxM7odGh1GOCV0ZhehYZmT9OYYeemEms8jIQBmtqN8HsBYogjJtWNvvjb58bVZ1CG5RCOQ31SFVp2S-Wt2ZXGboWTa42vutnKi7E9j-mZ95x-H1H8O6jVTFh8q0nkALy6dwPjf740-CIl2xLIdZH10qhaWf-C6mheD1hwm6vCkgyEBR4E-bb1sKTkkV7DtzQXd6PGPbXaBYVs4WeKExZ3e6Aaf3ItZNaJfTEp-DiHPJ_SRxUaggMBTDRF1TMJTKPOrMOODWQkyNrWTOhBqTtNpRV2kl9NQK3YF3TftZVcPjry13SCf_bbRdqyy1A36e3pqnA2-axzRUWdRZidPrecrEYH6cUHzgwLNKw82nVMy0z93IgXhF900DLgO--qQcny_Lgfu8WUqo78W__-s1PBycHB-lR8PR4RY8khScVbl029BeXF3jSwquFvqVtWgB3-57EP0GU8VAjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=scBiG+for+representation+learning+of+single-cell+gene+expression+data+based+on+bipartite+graph+embedding&rft.jtitle=NAR+genomics+and+bioinformatics&rft.au=Li%2C+Ting&rft.au=Qian%2C+Kun&rft.au=Wang%2C+Xiang&rft.au=Li%2C+Wei+Vivian&rft.date=2024-03-01&rft.pub=Oxford+University+Press&rft.eissn=2631-9268&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1093%2Fnargab%2Flqae004&rft.externalDocID=10.1093%2Fnargab%2Flqae004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-9268&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-9268&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-9268&client=summon |