scBiG for representation learning of single-cell gene expression data based on bipartite graph embedding

Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionality, sparsity and technical noise. Recognizing the benefits of dimensionality reduction in simplifying complexity and enhancing the signal-to-noise ratio, we introduce scBiG, a novel graph node embed...

Full description

Saved in:
Bibliographic Details
Published inNAR genomics and bioinformatics Vol. 6; no. 1; p. lqae004
Main Authors Li, Ting, Qian, Kun, Wang, Xiang, Li, Wei Vivian, Li, Hongwei
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.03.2024
Subjects
Online AccessGet full text
ISSN2631-9268
2631-9268
DOI10.1093/nargab/lqae004

Cover

Loading…
Abstract Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionality, sparsity and technical noise. Recognizing the benefits of dimensionality reduction in simplifying complexity and enhancing the signal-to-noise ratio, we introduce scBiG, a novel graph node embedding method designed for representation learning in scRNA-seq data. scBiG establishes a bipartite graph connecting cells and expressed genes, and then constructs a multilayer graph convolutional network to learn cell and gene embeddings. Through a series of extensive experiments, we demonstrate that scBiG surpasses commonly used dimensionality reduction techniques in various analytical tasks. Downstream tasks encompass unsupervised cell clustering, cell trajectory inference, gene expression reconstruction and gene co-expression analysis. Additionally, scBiG exhibits notable computational efficiency and scalability. In summary, scBiG offers a useful graph neural network framework for representation learning in scRNA-seq data, empowering a diverse array of downstream analyses.
AbstractList Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionality, sparsity and technical noise. Recognizing the benefits of dimensionality reduction in simplifying complexity and enhancing the signal-to-noise ratio, we introduce scBiG, a novel graph node embedding method designed for representation learning in scRNA-seq data. scBiG establishes a bipartite graph connecting cells and expressed genes, and then constructs a multilayer graph convolutional network to learn cell and gene embeddings. Through a series of extensive experiments, we demonstrate that scBiG surpasses commonly used dimensionality reduction techniques in various analytical tasks. Downstream tasks encompass unsupervised cell clustering, cell trajectory inference, gene expression reconstruction and gene co-expression analysis. Additionally, scBiG exhibits notable computational efficiency and scalability. In summary, scBiG offers a useful graph neural network framework for representation learning in scRNA-seq data, empowering a diverse array of downstream analyses.
Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionality, sparsity and technical noise. Recognizing the benefits of dimensionality reduction in simplifying complexity and enhancing the signal-to-noise ratio, we introduce scBiG, a novel graph node embedding method designed for representation learning in scRNA-seq data. scBiG establishes a bipartite graph connecting cells and expressed genes, and then constructs a multilayer graph convolutional network to learn cell and gene embeddings. Through a series of extensive experiments, we demonstrate that scBiG surpasses commonly used dimensionality reduction techniques in various analytical tasks. Downstream tasks encompass unsupervised cell clustering, cell trajectory inference, gene expression reconstruction and gene co-expression analysis. Additionally, scBiG exhibits notable computational efficiency and scalability. In summary, scBiG offers a useful graph neural network framework for representation learning in scRNA-seq data, empowering a diverse array of downstream analyses.Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionality, sparsity and technical noise. Recognizing the benefits of dimensionality reduction in simplifying complexity and enhancing the signal-to-noise ratio, we introduce scBiG, a novel graph node embedding method designed for representation learning in scRNA-seq data. scBiG establishes a bipartite graph connecting cells and expressed genes, and then constructs a multilayer graph convolutional network to learn cell and gene embeddings. Through a series of extensive experiments, we demonstrate that scBiG surpasses commonly used dimensionality reduction techniques in various analytical tasks. Downstream tasks encompass unsupervised cell clustering, cell trajectory inference, gene expression reconstruction and gene co-expression analysis. Additionally, scBiG exhibits notable computational efficiency and scalability. In summary, scBiG offers a useful graph neural network framework for representation learning in scRNA-seq data, empowering a diverse array of downstream analyses.
Author Li, Ting
Wang, Xiang
Li, Wei Vivian
Qian, Kun
Li, Hongwei
Author_xml – sequence: 1
  givenname: Ting
  surname: Li
  fullname: Li, Ting
  email: hwli@cug.edu.cn
– sequence: 2
  givenname: Kun
  surname: Qian
  fullname: Qian, Kun
– sequence: 3
  givenname: Xiang
  surname: Wang
  fullname: Wang, Xiang
– sequence: 4
  givenname: Wei Vivian
  orcidid: 0000-0002-2087-2709
  surname: Li
  fullname: Li, Wei Vivian
  email: hwli@cug.edu.cn
– sequence: 5
  givenname: Hongwei
  surname: Li
  fullname: Li, Hongwei
  email: hwli@cug.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38288376$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rFTEUxYNUbK3dupSAG11Mm49JXmYlWmoVCm50HfJx37yUeck0mRH975thXqUWRLK4Cfmdw7mcl-gopggIvabknJKOX0STe2MvhjsDhLTP0AmTnDYdk-ro0f0YnZVySwhhohUtoS_QMVdMKb6RJ2hX3Kdwjbcp4wxjhgJxMlNIEQ9gcgyxx2mLS50DNA6GAfcQAcOvhS0L581ksDUFPK4vG0aTpzAB7rMZdxj2Fryv8lfo-dYMBc4O8xT9-Hz1_fJLc_Pt-uvlx5vGCUamxlrZghOq6yx3spUb8Mp556lwVkgPXZ1s-VXMcEI9CAJEGGakYy13lp-iD6vvONs9eFf3yWbQYw57k3_rZIL--yeGne7TT02JYlwoUR3eHRxyupuhTHofyrK6iZDmolnHCFUdkZuKvn2C3qY5x7qf5nRDunr4Qr15HOlPlocWKtCugMuplAxb7cLaQk0YhhpNL33rtW996LvKzp_IHpz_KXi_CtI8_o-9B1oNwEg
CitedBy_id crossref_primary_10_1002_qub2_85
crossref_primary_10_1093_bib_bbae538
Cites_doi 10.1186/s13059-015-0805-z
10.1038/s41592-018-0229-2
10.1186/s13059-019-1898-6
10.1038/nbt.3192
10.1016/j.coisb.2021.05.008
10.3389/fgene.2021.646936
10.1145/3038912.3052569
10.1038/s41467-021-27729-z
10.21105/joss.00861
10.1126/science.aat1699
10.1039/C3AY41907J
10.1038/s41586-019-1652-y
10.1609/aaai.v32i1.11604
10.1007/978-1-4842-5364-9_2
10.1186/s12864-018-4772-0
10.1186/s13059-017-1305-0
10.1038/nri.2017.76
10.1186/1752-0509-1-54
10.1093/nar/gky900
10.1186/s13059-017-1382-0
10.1093/bioinformatics/18.1.51
10.1038/ncomms14049
10.1016/j.knosys.2018.03.022
10.1038/nsmb.2660
10.1016/j.cell.2015.04.044
10.1038/s41587-019-0071-9
10.1145/3397271.3401063
10.1016/j.cell.2018.02.001
10.1088/1742-5468/2008/10/P10008
10.1186/s13059-023-02850-y
10.1038/s41592-019-0576-7
10.1126/science.1245316
10.1093/nar/gkw430
10.1016/j.cell.2015.05.002
10.1038/s41586-018-0590-4
10.1093/bioinformatics/btz078
10.1038/s41467-018-03405-7
10.1093/bioinformatics/btr260
10.1038/s41598-021-99003-7
10.1038/s41467-018-07931-2
10.1038/s41467-021-22197-x
10.1016/j.cels.2016.08.011
10.1016/j.cell.2018.05.061
10.1093/bioinformatics/btab787
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1093/nargab/lqae004
DatabaseName Oxford Journals Open Access Collection (WRLC)
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
ProQuest SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef


Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2631-9268
ExternalDocumentID PMC10823585
38288376
10_1093_nargab_lqae004
10.1093/nargab/lqae004
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: R35GM142702
– fundername: ;
  grantid: 42274172
GroupedDBID 0R~
53G
AAFWJ
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABXVV
AFPKN
AFULF
ALMA_UNASSIGNED_HOLDINGS
AMNDL
EBS
EMOBN
GROUPED_DOAJ
IAO
IGS
IHR
INH
ITC
KSI
M~E
ROX
RPM
TOX
AAYXX
AFKRA
BBNVY
BENPR
BHPHI
CCPQU
CITATION
HCIFZ
M7P
PHGZM
PHGZT
PIMPY
NPM
PQGLB
8FE
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c520t-bb64ec5899b3c6467ed8cdcd15cb56de95cb2899b82a301de50e05a2a6c243cb3
IEDL.DBID BENPR
ISSN 2631-9268
IngestDate Thu Aug 21 18:36:03 EDT 2025
Thu Jul 10 17:14:47 EDT 2025
Fri Jul 25 11:46:25 EDT 2025
Mon Jul 21 06:07:19 EDT 2025
Tue Jul 01 02:50:16 EDT 2025
Thu Apr 24 23:02:21 EDT 2025
Thu Jan 30 13:18:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2024. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c520t-bb64ec5899b3c6467ed8cdcd15cb56de95cb2899b82a301de50e05a2a6c243cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The first two authors should be regarded as Joint First Authors.
ORCID 0000-0002-2087-2709
OpenAccessLink https://www.proquest.com/docview/3170909037?pq-origsite=%requestingapplication%
PMID 38288376
PQID 3170909037
PQPubID 7097362
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10823585
proquest_miscellaneous_2920189067
proquest_journals_3170909037
pubmed_primary_38288376
crossref_citationtrail_10_1093_nargab_lqae004
crossref_primary_10_1093_nargab_lqae004
oup_primary_10_1093_nargab_lqae004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle NAR genomics and bioinformatics
PublicationTitleAlternate NAR Genom Bioinform
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Eraslan (2024052805581462300_B7) 2019; 10
Hetzel (2024052805581462300_B17) 2021; 28
Saelens (2024052805581462300_B45) 2019; 37
Goyal (2024052805581462300_B11) 2018; 151
Zheng (2024052805581462300_B33) 2017; 8
Macosko (2024052805581462300_B35) 2015; 161
Yan (2024052805581462300_B36) 2013; 20
Choi (2024052805581462300_B16) 2023; 24
Satija (2024052805581462300_B25) 2015; 33
Papadopoulos (2024052805581462300_B38) 2019; 35
Liberzon (2024052805581462300_B48) 2011; 27
Chen (2024052805581462300_B15) 2023
Zappia (2024052805581462300_B41) 2017; 18
Baron (2024052805581462300_B29) 2016; 3
Xiang (2024052805581462300_B2) 2021; 12
McInnes (2024052805581462300_B43) 2018; 3
Liebermeister (2024052805581462300_B5) 2002; 18
Sun (2024052805581462300_B3) 2019; 20
Deng (2024052805581462300_B37) 2014; 343
Young (2024052805581462300_B34) 2018; 361
Lopez (2024052805581462300_B9) 2018; 15
Li (2024052805581462300_B27) 2018; 9
Han (2024052805581462300_B31) 2018; 172
Blondel (2024052805581462300_B42) 2008; 2008
Street (2024052805581462300_B44) 2018; 19
Amodio (2024052805581462300_B8) 2019; 16
Wolf (2024052805581462300_B22) 2018; 19
Schaum (2024052805581462300_B40) 2018; 562
He (2024052805581462300_B19) 2020
Linderman (2024052805581462300_B28) 2022; 9
Langfelder (2024052805581462300_B47) 2007; 1
He (2024052805581462300_B21) 2017
Wang (2024052805581462300_B13) 2021; 12
Ciortan (2024052805581462300_B14) 2022; 38
Kingma (2024052805581462300_B24) 2015
Li (2024052805581462300_B20) 2018
Pierson (2024052805581462300_B6) 2015; 16
Luo (2024052805581462300_B10) 2021; 11
Ji (2024052805581462300_B46) 2016; 44
Adam (2024052805581462300_B32) 2017; 144
Popescu (2024052805581462300_B39) 2019; 574
Bro (2024052805581462300_B4) 2014; 6
Kipf (2024052805581462300_B18) 2017
Van Dijk (2024052805581462300_B26) 2018; 174
Wu (2024052805581462300_B12) 2022; 55
Ketkar (2024052805581462300_B23) 2021
Papalexi (2024052805581462300_B1) 2018; 18
Klein (2024052805581462300_B30) 2015; 161
Zhang (2024052805581462300_B49) 2019; 47
References_xml – volume: 16
  start-page: 1
  year: 2015
  ident: 2024052805581462300_B6
  article-title: ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0805-z
– volume: 15
  start-page: 1053
  year: 2018
  ident: 2024052805581462300_B9
  article-title: Deep generative modeling for single-cell transcriptomics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0229-2
– volume: 20
  start-page: 1
  year: 2019
  ident: 2024052805581462300_B3
  article-title: Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1898-6
– volume: 33
  start-page: 495
  year: 2015
  ident: 2024052805581462300_B25
  article-title: Spatial reconstruction of single-cell gene expression data
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3192
– volume: 28
  start-page: 100347
  year: 2021
  ident: 2024052805581462300_B17
  article-title: Graph representation learning for single-cell biology
  publication-title: Curr. Opin. Syst. Biol.
  doi: 10.1016/j.coisb.2021.05.008
– volume-title: International Conference on Learning Representations
  year: 2015
  ident: 2024052805581462300_B24
  article-title: Adam: a method for stochastic optimization
– volume: 12
  start-page: 646936
  year: 2021
  ident: 2024052805581462300_B2
  article-title: A comparison for dimensionality reduction methods of single-cell RNA-seq data
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2021.646936
– start-page: 173
  volume-title: Proceedings of the 26th International Conference on World Wide Web,Perth, Australia
  year: 2017
  ident: 2024052805581462300_B21
  article-title: Neural collaborative filtering
  doi: 10.1145/3038912.3052569
– volume: 9
  start-page: 192
  year: 2022
  ident: 2024052805581462300_B28
  article-title: Zero-preserving imputation of scRNA-seq data using low-rank approximation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27729-z
– volume: 3
  start-page: 861
  year: 2018
  ident: 2024052805581462300_B43
  article-title: UMAP: Uniform Manifold Approximation and Projection
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00861
– volume: 361
  start-page: 594
  year: 2018
  ident: 2024052805581462300_B34
  article-title: Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors
  publication-title: Science
  doi: 10.1126/science.aat1699
– volume: 6
  start-page: 2812
  year: 2014
  ident: 2024052805581462300_B4
  article-title: Principal component analysis
  publication-title: Anal. Methods
  doi: 10.1039/C3AY41907J
– volume: 574
  start-page: 365
  year: 2019
  ident: 2024052805581462300_B39
  article-title: Decoding human fetal liver haematopoiesis
  publication-title: Nature
  doi: 10.1038/s41586-019-1652-y
– volume-title: Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA
  year: 2018
  ident: 2024052805581462300_B20
  article-title: Deeper insights into graph convolutional networks for semi-supervised learning
  doi: 10.1609/aaai.v32i1.11604
– start-page: 27
  volume-title: Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch
  year: 2021
  ident: 2024052805581462300_B23
  article-title: Introduction to PyTorch
  doi: 10.1007/978-1-4842-5364-9_2
– volume: 19
  start-page: 477
  year: 2018
  ident: 2024052805581462300_B44
  article-title: Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics
  publication-title: BMC Genomics
  doi: 10.1186/s12864-018-4772-0
– volume: 18
  start-page: 174
  year: 2017
  ident: 2024052805581462300_B41
  article-title: Splatter: simulation of single-cell RNA sequencing data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1305-0
– volume: 18
  start-page: 35
  year: 2018
  ident: 2024052805581462300_B1
  article-title: Single-cell RNA sequencing to explore immune cell heterogeneity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2017.76
– volume: 1
  start-page: 1
  year: 2007
  ident: 2024052805581462300_B47
  article-title: Eigengene networks for studying the relationships between co-expression modules
  publication-title: BMC Syst. Biol.
  doi: 10.1186/1752-0509-1-54
– volume: 47
  start-page: D721
  year: 2019
  ident: 2024052805581462300_B49
  article-title: CellMarker: a manually curated resource of cell markers in human and mouse
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky900
– volume: 55
  start-page: 1
  year: 2022
  ident: 2024052805581462300_B12
  article-title: Graph neural networks in recommender systems: a survey
  publication-title: ACM Comput. Surv.
– volume: 19
  start-page: 15
  year: 2018
  ident: 2024052805581462300_B22
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1382-0
– volume: 18
  start-page: 51
  year: 2002
  ident: 2024052805581462300_B5
  article-title: Linear modes of gene expression determined by independent component analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.1.51
– year: 2023
  ident: 2024052805581462300_B15
  article-title: SIMBA: single-cell embedding along with features
  publication-title: Nat. Methods
– volume: 8
  start-page: 14049
  year: 2017
  ident: 2024052805581462300_B33
  article-title: Massively parallel digital transcriptional profiling of single cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14049
– volume: 151
  start-page: 78
  year: 2018
  ident: 2024052805581462300_B11
  article-title: Graph embedding techniques, applications, and performance: a survey
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.03.022
– volume: 20
  start-page: 1131
  year: 2013
  ident: 2024052805581462300_B36
  article-title: Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2660
– volume: 161
  start-page: 1187
  year: 2015
  ident: 2024052805581462300_B30
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– volume: 37
  start-page: 547
  year: 2019
  ident: 2024052805581462300_B45
  article-title: A comparison of single-cell trajectory inference methods
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0071-9
– volume-title: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Xi'an, China
  year: 2020
  ident: 2024052805581462300_B19
  article-title: LightGCN: simplifying and powering graph convolution network for recommendation
  doi: 10.1145/3397271.3401063
– volume: 172
  start-page: 1091
  year: 2018
  ident: 2024052805581462300_B31
  article-title: Mapping the mouse cell atlas by Microwell-seq
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.001
– volume-title: International Conference on Learning Representations
  year: 2017
  ident: 2024052805581462300_B18
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 144
  start-page: 3625
  year: 2017
  ident: 2024052805581462300_B32
  article-title: Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development
  publication-title: Development
– volume: 2008
  start-page: P10008
  year: 2008
  ident: 2024052805581462300_B42
  article-title: Fast unfolding of communities in large networks
  publication-title: J. Stat. Mech. Theor. Exp.
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 24
  start-page: 29
  year: 2023
  ident: 2024052805581462300_B16
  article-title: siVAE: interpretable deep generative models for single-cell transcriptomes
  publication-title: Genome Biol.
  doi: 10.1186/s13059-023-02850-y
– volume: 16
  start-page: 1139
  year: 2019
  ident: 2024052805581462300_B8
  article-title: Exploring single-cell data with deep multitasking neural networks
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0576-7
– volume: 343
  start-page: 193
  year: 2014
  ident: 2024052805581462300_B37
  article-title: Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells
  publication-title: Science
  doi: 10.1126/science.1245316
– volume: 44
  start-page: e117
  year: 2016
  ident: 2024052805581462300_B46
  article-title: TSCAN: pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw430
– volume: 161
  start-page: 1202
  year: 2015
  ident: 2024052805581462300_B35
  article-title: Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.002
– volume: 562
  start-page: 367
  year: 2018
  ident: 2024052805581462300_B40
  article-title: Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris: The Tabula Muris Consortium
  publication-title: Nature
  doi: 10.1038/s41586-018-0590-4
– volume: 35
  start-page: 3517
  year: 2019
  ident: 2024052805581462300_B38
  article-title: PROSSTT: probabilistic simulation of single-cell RNA-seq data for complex differentiation processes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz078
– volume: 9
  start-page: 997
  year: 2018
  ident: 2024052805581462300_B27
  article-title: An accurate and robust imputation method scImpute for single-cell RNA-seq data
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03405-7
– volume: 27
  start-page: 1739
  year: 2011
  ident: 2024052805581462300_B48
  article-title: Molecular Signatures Database (MSigDB) 3.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
– volume: 11
  start-page: 20028
  year: 2021
  ident: 2024052805581462300_B10
  article-title: A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99003-7
– volume: 10
  start-page: 390
  year: 2019
  ident: 2024052805581462300_B7
  article-title: Single-cell RNA-seq denoising using a deep count autoencoder
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07931-2
– volume: 12
  start-page: 1882
  year: 2021
  ident: 2024052805581462300_B13
  article-title: scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22197-x
– volume: 3
  start-page: 346
  year: 2016
  ident: 2024052805581462300_B29
  article-title: A single-cell transcriptomic map of the human and mouse pancreas reveals inter- and intra-cell population structure
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2016.08.011
– volume: 174
  start-page: 716
  year: 2018
  ident: 2024052805581462300_B26
  article-title: Recovering gene interactions from single-cell data using data diffusion
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.061
– volume: 38
  start-page: 1037
  year: 2022
  ident: 2024052805581462300_B14
  article-title: GNN-based embedding for clustering scRNA-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab787
SSID ssj0002545401
Score 2.2631016
Snippet Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionality, sparsity and technical noise. Recognizing the...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage lqae004
SubjectTerms Bioinformatics
Cells
Correspondence
Editor's Choice
Embedding
Gene expression
Genomics
Learning
Methods
Neural networks
Title scBiG for representation learning of single-cell gene expression data based on bipartite graph embedding
URI https://www.ncbi.nlm.nih.gov/pubmed/38288376
https://www.proquest.com/docview/3170909037
https://www.proquest.com/docview/2920189067
https://pubmed.ncbi.nlm.nih.gov/PMC10823585
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS8MwEA-6vfgiil_VOaIIPpW16cfaJ3HiHIJTZIO9lSa9usHsppvgn-9dm9ZNUF9aStK05C73lcv9GLsIlO9IJW0ztQAdFCWkGUoB6KqEsYAQX5J0OPmh7_eG7v3IG-mA20KnVZYyMRfUyUxRjLyFes4KKajQvpq_mYQaRburGkJjk9VRBAfofNU7t_2n5yrKgu4PmiR2Va3RaWWEHytb07cYLI3OVmqjtRNuK4bmz3zJFQXU3WHb2nLk1wWpd9kGZHtsvFCdyR1Hy5Pn5SnLo0QZ13AQL3yWcooHTMGkID1HhgEOnzr_NeOUIspJlyUcn-RkTry0BJ5XsubwKiEh9bbPht3bwU3P1OAJpvKEtTSl9F1QHrpT0lE-ikMgnCKV2J6Snp9AiHdytmQgYlzkCXgWWF4sYl8J11HSOWC1bJbBEeNBImicMEhTx3UV2hR-W6Xk2sQWDqYMZpaTGCldWZwALqZRscPtRMWkR3rSDXZZ9Z8XNTV-7XmONPm3U6MkWaQX4CL6ZheDnVXNuHRoquMMZh-LiIC67CBEfW2ww4LC1aecgGCY277BgjXaVx2oLPd6SzYZ5-W5bdq8RC_s-O__OmFbAg2kIp-twWrL9w84RQNnKZuai5t5gACvg8fRF_EcBIU
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6V7gFeJhAbhA0wExNPURM7SZMHNDHW0rKtQmiT9hZi58IqdWm3dgL-1H4jd42TrUjA056iKI4T3Z1999nn-wDexiZS2mjfLTwkgGKkdhMtkaBKkklM6CXNh5OPR9HgNPh8Fp614KY-C8NplfWcuJyo86nhNfIO-Tkv4UWF7t7s0mXWKN5drSk0KrM4xF8_CLLN3w8PSL-7UvZ7Jx8HrmUVcE0ovYWrdRSgCQlnaGUimieQCXxM7odGh1GOCV0ZhehYZmT9OYYeemEms8jIQBmtqN8HsBYogjJtWNvvjb58bVZ1CG5RCOQ31SFVp2S-Wt2ZXGboWTa42vutnKi7E9j-mZ95x-H1H8O6jVTFh8q0nkALy6dwPjf740-CIl2xLIdZH10qhaWf-C6mheD1hwm6vCkgyEBR4E-bb1sKTkkV7DtzQXd6PGPbXaBYVs4WeKExZ3e6Aaf3ItZNaJfTEp-DiHPJ_SRxUaggMBTDRF1TMJTKPOrMOODWQkyNrWTOhBqTtNpRV2kl9NQK3YF3TftZVcPjry13SCf_bbRdqyy1A36e3pqnA2-axzRUWdRZidPrecrEYH6cUHzgwLNKw82nVMy0z93IgXhF900DLgO--qQcny_Lgfu8WUqo78W__-s1PBycHB-lR8PR4RY8khScVbl029BeXF3jSwquFvqVtWgB3-57EP0GU8VAjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=scBiG+for+representation+learning+of+single-cell+gene+expression+data+based+on+bipartite+graph+embedding&rft.jtitle=NAR+genomics+and+bioinformatics&rft.au=Li%2C+Ting&rft.au=Qian%2C+Kun&rft.au=Wang%2C+Xiang&rft.au=Li%2C+Wei+Vivian&rft.date=2024-03-01&rft.pub=Oxford+University+Press&rft.eissn=2631-9268&rft.volume=6&rft.issue=1&rft_id=info:doi/10.1093%2Fnargab%2Flqae004&rft.externalDocID=10.1093%2Fnargab%2Flqae004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-9268&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-9268&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-9268&client=summon