scBiG for representation learning of single-cell gene expression data based on bipartite graph embedding
Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionality, sparsity and technical noise. Recognizing the benefits of dimensionality reduction in simplifying complexity and enhancing the signal-to-noise ratio, we introduce scBiG, a novel graph node embed...
Saved in:
Published in | NAR genomics and bioinformatics Vol. 6; no. 1; p. lqae004 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.03.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Analyzing single-cell RNA sequencing (scRNA-seq) data remains a challenge due to its high dimensionality, sparsity and technical noise. Recognizing the benefits of dimensionality reduction in simplifying complexity and enhancing the signal-to-noise ratio, we introduce scBiG, a novel graph node embedding method designed for representation learning in scRNA-seq data. scBiG establishes a bipartite graph connecting cells and expressed genes, and then constructs a multilayer graph convolutional network to learn cell and gene embeddings. Through a series of extensive experiments, we demonstrate that scBiG surpasses commonly used dimensionality reduction techniques in various analytical tasks. Downstream tasks encompass unsupervised cell clustering, cell trajectory inference, gene expression reconstruction and gene co-expression analysis. Additionally, scBiG exhibits notable computational efficiency and scalability. In summary, scBiG offers a useful graph neural network framework for representation learning in scRNA-seq data, empowering a diverse array of downstream analyses. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The first two authors should be regarded as Joint First Authors. |
ISSN: | 2631-9268 2631-9268 |
DOI: | 10.1093/nargab/lqae004 |