Reference Correlation for the Viscosity of Carbon Dioxide
A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was developed. Literature results based on an ab initio potential energy surface were the foundation of the correlation of the viscosity in the limit of z...
Saved in:
Published in | Journal of physical and chemical reference data Vol. 46; no. 1; pp. 13107 - 13134 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics (AIP)
01.03.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0047-2689 1529-7845 |
DOI | 10.1063/1.4977429 |
Cover
Loading…
Abstract | A comprehensive database of experimental and computed data for the viscosity of
carbon dioxide
(CO2) was compiled and a new reference correlation was developed.
Literature results based on an ab initio potential energy surface were the
foundation of the correlation of the viscosity in the limit of zero density in the
temperature range from 100 to 2000 K. Guided symbolic regression was employed to obtain a
new functional form that extrapolates correctly to 0 and to 10 000 K. Coordinated
measurements at
low density made it possible to implement the temperature dependence of the
Rainwater-Friend theory in the linear-in-density viscosity term. The
residual viscosity could be formulated with a scaling term
ρ
γ
/T, the significance
of which was confirmed by symbolic regression. The final viscosity
correlation covers
temperatures from 100 to 2000 K for gaseous CO2 and from 220 to 700 K with
pressures along the melting line up to 8000 MPa for compressed and supercritical liquid
states. The data representation is more accurate than with the previous correlations, and the covered
pressure and temperature range is significantly extended. The critical enhancement of the
viscosity
of CO2 is included in the new correlation. |
---|---|
AbstractList | A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO
) was compiled and a new reference correlation was developed. Literature results based on an
potential energy surface were the foundation of the correlation of the viscosity in the limit of zero density in the temperature range from 100 K to 2000 K. Guided symbolic regression was employed to obtain a new functional form that extrapolates correctly to
→ 0 K and to 10 000 K. Coordinated measurements at low density made it possible to implement the temperature dependence of the Rainwater-Friend theory in the linear-in-density viscosity term. The residual viscosity could be formulated with a scaling term
/
the significance of which was confirmed by symbolic regression. The final viscosity correlation covers temperatures from 100 K to 2000 K for gaseous CO
, and from 220 K to 700 K with pressures along the melting line up to 8000 MPa for compressed and supercritical liquid states. The data representation is more accurate than with the previous correlations, and the covered pressure and temperature range is significantly extended. The critical enhancement of the viscosity of CO
is included in the new correlation. A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was developed. Literature results based on an ab initio potential energy surface were the foundation of the correlation of the viscosity in the limit of zero density in the temperature range from 100 K to 2000 K. Guided symbolic regression was employed to obtain a new functional form that extrapolates correctly to T → 0 K and to 10 000 K. Coordinated measurements at low density made it possible to implement the temperature dependence of the Rainwater-Friend theory in the linear-in-density viscosity term. The residual viscosity could be formulated with a scaling term ργ/T the significance of which was confirmed by symbolic regression. The final viscosity correlation covers temperatures from 100 K to 2000 K for gaseous CO2, and from 220 K to 700 K with pressures along the melting line up to 8000 MPa for compressed and supercritical liquid states. The data representation is more accurate than with the previous correlations, and the covered pressure and temperature range is significantly extended. The critical enhancement of the viscosity of CO2 is included in the new correlation. A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was developed. Literature results based on an ab initio potential energy surface were the foundation of the correlation of the viscosity in the limit of zero density in the temperature range from 100 to 2000 K. Guided symbolic regression was employed to obtain a new functional form that extrapolates correctly to 0 and to 10 000 K. Coordinated measurements at low density made it possible to implement the temperature dependence of the Rainwater-Friend theory in the linear-in-density viscosity term. The residual viscosity could be formulated with a scaling term ρ γ /T, the significance of which was confirmed by symbolic regression. The final viscosity correlation covers temperatures from 100 to 2000 K for gaseous CO2 and from 220 to 700 K with pressures along the melting line up to 8000 MPa for compressed and supercritical liquid states. The data representation is more accurate than with the previous correlations, and the covered pressure and temperature range is significantly extended. The critical enhancement of the viscosity of CO2 is included in the new correlation. A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was developed. Literature results based on an ab initio potential energy surface were the foundation of the correlation of the viscosity in the limit of zero density in the temperature range from 100 K to 2000 K. Guided symbolic regression was employed to obtain a new functional form that extrapolates correctly to T → 0 K and to 10 000 K. Coordinated measurements at low density made it possible to implement the temperature dependence of the Rainwater-Friend theory in the linear-in-density viscosity term. The residual viscosity could be formulated with a scaling term ργ /T the significance of which was confirmed by symbolic regression. The final viscosity correlation covers temperatures from 100 K to 2000 K for gaseous CO2, and from 220 K to 700 K with pressures along the melting line up to 8000 MPa for compressed and supercritical liquid states. The data representation is more accurate than with the previous correlations, and the covered pressure and temperature range is significantly extended. The critical enhancement of the viscosity of CO2 is included in the new correlation.A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was developed. Literature results based on an ab initio potential energy surface were the foundation of the correlation of the viscosity in the limit of zero density in the temperature range from 100 K to 2000 K. Guided symbolic regression was employed to obtain a new functional form that extrapolates correctly to T → 0 K and to 10 000 K. Coordinated measurements at low density made it possible to implement the temperature dependence of the Rainwater-Friend theory in the linear-in-density viscosity term. The residual viscosity could be formulated with a scaling term ργ /T the significance of which was confirmed by symbolic regression. The final viscosity correlation covers temperatures from 100 K to 2000 K for gaseous CO2, and from 220 K to 700 K with pressures along the melting line up to 8000 MPa for compressed and supercritical liquid states. The data representation is more accurate than with the previous correlations, and the covered pressure and temperature range is significantly extended. The critical enhancement of the viscosity of CO2 is included in the new correlation. |
Author | Muzny, Chris D. Laesecke, Arno |
Author_xml | – sequence: 1 givenname: Arno surname: Laesecke fullname: Laesecke, Arno email: Arno.Laesecke@Boulder.NIST.Gov organization: Material Measurement Laboratory, Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3337, USA – sequence: 2 givenname: Chris D. surname: Muzny fullname: Muzny, Chris D. organization: Material Measurement Laboratory, Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3337, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28736460$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1463125$$D View this record in Osti.gov |
BookMark | eNqd0E1rGzEQBmARXBrb7SF_ICw5NYVNNJJWH8fgpm3AUChtr0KWZ4nCeuVIcoj_fTa1TSDklJMO88w74p2QUR97JOQE6AVQyS_hQhilBDNHZAwNM7XSohmRMaVC1Uxqc0wmOd9RSpXW7CM5ZlpxKSQdE_MbW0zYe6xmMSXsXAmxr9qYqnKL1b-QfcyhbKvYVjOXFsPsW4iPYYmfyIfWdRk_798p-fv9-s_sZz3_9eNmdjWvfcNoqSV4zig3jQfXOFhQB0uP0mupnTTOaNdSZMo4bhiTqA2TXixES51XTnnHp-RslxtzCTb7UNDf-tj36IsFITmwZkBfdmid4v0Gc7Gr4efYda7HuMkWDOMAQEEM9HRPN4sVLu06hZVLW3voZACXO-BTzDlha4eb_2spyYXOArXPrVuw-9aHjfNXG4fQt-zXnc2H1Pfhh5heoF0vW_4Ew1ua8w |
CODEN | JPCRBU |
CitedBy_id | crossref_primary_10_1016_j_ijrefrig_2023_04_019 crossref_primary_10_1016_j_jngse_2020_103271 crossref_primary_10_1021_acs_energyfuels_4c04887 crossref_primary_10_1016_j_enconman_2021_114568 crossref_primary_10_3847_PSJ_abbc14 crossref_primary_10_1007_s10765_022_03074_1 crossref_primary_10_1016_j_petrol_2021_109359 crossref_primary_10_1016_j_jct_2022_106957 crossref_primary_10_1016_j_jrmge_2022_03_014 crossref_primary_10_1063_5_0236883 crossref_primary_10_1016_j_ijhydene_2024_06_244 crossref_primary_10_1088_1742_6596_2076_1_012030 crossref_primary_10_1016_j_energy_2025_135231 crossref_primary_10_1021_acs_energyfuels_3c02784 crossref_primary_10_1016_j_supflu_2023_105966 crossref_primary_10_1007_s11814_022_1316_8 crossref_primary_10_1016_j_fluid_2021_112951 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124888 crossref_primary_10_2118_225428_PA crossref_primary_10_1063_1_5036625 crossref_primary_10_1016_j_jct_2020_106266 crossref_primary_10_1021_acs_iecr_1c02154 crossref_primary_10_1007_s10765_024_03482_5 crossref_primary_10_1115_1_4054212 crossref_primary_10_1016_j_tsep_2020_100647 crossref_primary_10_1021_acs_energyfuels_4c00824 crossref_primary_10_1016_j_applthermaleng_2021_117201 crossref_primary_10_1016_j_fuel_2021_122947 crossref_primary_10_1007_s10765_023_03233_y crossref_primary_10_1021_acs_jced_0c01009 crossref_primary_10_1021_acs_jpclett_1c01594 crossref_primary_10_1016_j_molliq_2017_12_010 crossref_primary_10_1016_j_supflu_2018_07_002 crossref_primary_10_1038_s41598_019_44687_1 crossref_primary_10_1016_j_ijrefrig_2020_11_020 crossref_primary_10_1016_j_supflu_2020_104939 crossref_primary_10_1016_j_supflu_2019_104578 crossref_primary_10_1007_s10765_022_03096_9 crossref_primary_10_1088_1681_7575_ad435e crossref_primary_10_1088_1681_7575_ad435d crossref_primary_10_1016_j_jct_2024_107345 crossref_primary_10_1007_s10765_017_2305_8 crossref_primary_10_1016_j_ceramint_2023_03_121 crossref_primary_10_1016_j_supflu_2024_106338 crossref_primary_10_1016_j_jcou_2019_02_022 crossref_primary_10_1016_j_supflu_2023_105860 crossref_primary_10_1016_j_molliq_2022_120479 crossref_primary_10_1021_acs_iecr_2c01427 crossref_primary_10_1016_j_icarus_2019_113438 crossref_primary_10_1016_j_ijrefrig_2017_07_016 crossref_primary_10_1021_acs_jced_4c00336 crossref_primary_10_1016_j_egyr_2024_05_009 crossref_primary_10_1063_1_5057413 crossref_primary_10_1016_j_geoen_2023_211727 crossref_primary_10_1021_acs_iecr_1c03508 crossref_primary_10_1002_ese3_736 crossref_primary_10_1021_acs_jced_4c00451 crossref_primary_10_1063_5_0250064 crossref_primary_10_17122_ntj_oil_2021_4_9_25 crossref_primary_10_1016_j_jct_2023_107212 crossref_primary_10_1016_j_supflu_2022_105533 crossref_primary_10_3390_molecules29112529 crossref_primary_10_1115_1_4066654 crossref_primary_10_1002_ceat_202200189 crossref_primary_10_1007_s10765_024_03492_3 crossref_primary_10_1007_s11630_019_1118_4 crossref_primary_10_1016_j_polymer_2024_127373 crossref_primary_10_1016_j_tsep_2024_102442 crossref_primary_10_1063_1_5020802 crossref_primary_10_1016_j_fluid_2019_112280 crossref_primary_10_1016_j_fuel_2019_04_017 crossref_primary_10_1016_j_geoen_2024_212763 crossref_primary_10_1021_acs_jced_4c00268 crossref_primary_10_1021_acs_jced_7b01069 crossref_primary_10_1039_D2CP02701A crossref_primary_10_1016_j_heliyon_2023_e13030 crossref_primary_10_1029_2020JE006485 crossref_primary_10_2139_ssrn_4097929 crossref_primary_10_1021_acs_jpcb_3c06813 crossref_primary_10_1016_j_supflu_2024_106237 crossref_primary_10_1021_acs_jced_0c00209 crossref_primary_10_1016_j_supflu_2020_105141 crossref_primary_10_1016_j_molliq_2018_12_123 crossref_primary_10_3390_cryst11030305 crossref_primary_10_1007_s11242_019_01278_y crossref_primary_10_1115_1_4066709 crossref_primary_10_1016_j_geoen_2024_213321 crossref_primary_10_1021_acs_jced_4c00083 crossref_primary_10_1016_j_marpetgeo_2024_107195 crossref_primary_10_1021_acs_energyfuels_4c03699 crossref_primary_10_1016_j_supflu_2023_106003 crossref_primary_10_1016_j_cej_2024_159179 crossref_primary_10_1016_j_cpc_2024_109407 crossref_primary_10_1016_j_seta_2022_101965 crossref_primary_10_1016_j_molliq_2020_113208 crossref_primary_10_1016_j_energy_2019_02_055 crossref_primary_10_1007_s10765_021_02927_5 crossref_primary_10_1016_j_molliq_2022_119184 crossref_primary_10_1021_acs_jced_0c00228 crossref_primary_10_1016_j_molliq_2022_120799 crossref_primary_10_1021_acs_jced_0c00749 crossref_primary_10_1073_pnas_1815943116 crossref_primary_10_1134_S1990793121070022 crossref_primary_10_1021_acs_jpcc_3c02264 crossref_primary_10_1016_j_fluid_2024_114178 crossref_primary_10_1039_D0CP04985A crossref_primary_10_1007_s10765_021_02897_8 crossref_primary_10_1007_s10765_019_2544_y crossref_primary_10_1016_j_engfracmech_2021_107548 |
Cites_doi | 10.1007/bf01003580 10.1051/jcp/1970670631 10.1016/0378-3812(92)85140-4 10.1021/ef034109e 10.1615/978-1-56700-063-4.0 10.1007/bf00502110 10.1126/science.174.4008.490 10.1063/1.555863 10.1515/zpch-1913-0142 10.1016/s0031-8914(57)90708-5 10.1007/s10765-011-0978-y 10.1063/1.1770695 10.1016/0378-3812(92)85139-y 10.1063/1.1677823 10.1515/zpch-1935-17321 10.1063/1.556013 10.1088/0026-1394/42/1/002 10.1103/physreve.80.021201 10.1515/zpch-1986-01135 10.1103/physreva.42.4470 10.1063/1.1859286 10.1016/b978-0-08-027284-9.50043-7 10.1146/annurev-fluid-011212-140627 10.1017/s0022112093000011 10.1103/physreva.24.1469 10.1063/1.2215609 10.1016/j.supflu.2007.10.004 10.1098/rstl.1846.0029 10.1002/aic.690210233 10.1063/1.4712218 10.1126/science.1165893 10.1103/physreve.88.042139 10.1007/978-1-4757-1628-3 10.1007/978-1-4419-1626-6_5 10.1021/j150405a004 10.1021/je500083n 10.1063/1.556025 10.1080/00268971003670873 10.1016/s0031-8914(63)80294-3 10.1016/s0378-4371(96)00466-9 10.1002/andp.18752310803 10.1080/00268976.2012.726379 10.1007/978-1-4757-6931-9 10.1063/1.1699894 10.1021/acs.jpcb.5b11701 10.1016/j.jct.2007.07.002 10.1021/ie060560s 10.1063/1.4930838 10.1063/1.441286 10.1063/1.479108 10.1016/s0009-2614(00)00793-4 10.1016/s0009-2614(84)85163-5 10.1103/physrevb.52.6285 10.1002/aic.690070419 10.1016/j.supflu.2006.09.002 10.1038/001020a0 10.1063/1.4896538 10.1063/1.4940892 10.1103/physreva.11.658 10.1039/f19797500892 10.1007/BF02564872 10.1073/pnas.0603395103 10.1063/1.1676196 10.1103/physrevx.2.011011 10.1002/aic.15066 10.1103/physreve.49.359 10.1063/1.4954402 10.1063/1.459679 10.1098/rstl.1869.0021 10.1063/1.1486438 10.1007/978-3-642-72021-5_40 10.1016/0378-4371(77)90003-6 10.1016/j.supflu.2010.12.006 10.1007/bf00502113 10.1038/416811a 10.1063/1.3434530 10.1016/0031-8914(72)90276-5 10.1126/science.157.3787.375 10.1021/ie301751y 10.1103/physreva.36.4062 10.1016/0378-4371(90)90127-e 10.1016/0031-8914(66)90169-8 10.1063/1.555991 10.1063/1.2434960 10.1063/1.555798 10.1139/cjr40b-041 10.1063/1.555875 10.1021/j100031a034 10.1016/j.fluid.2004.07.012 10.1021/je5009526 10.1063/1.1924700 10.1016/j.jct.2015.04.015 10.1016/0031-8914(64)90211-3 10.1021/je0342419 10.1063/1.555898 10.1080/00107517108205263 10.1021/ie0300880 10.1007/bf01447093 10.1063/1.4953002 10.1007/s10765-016-2068-7 10.1021/ja02184a005 10.1063/1.3679169 |
ContentType | Journal Article |
Copyright | 2017 by the U.S. Secretary of Commerce on behalf of the United States.
All rights reserved. |
Copyright_xml | – notice: 2017 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. |
CorporateAuthor | National Inst. of Standards and Technology (NIST), Boulder, CO (United States) |
CorporateAuthor_xml | – name: National Inst. of Standards and Technology (NIST), Boulder, CO (United States) |
DBID | AAYXX CITATION NPM 7X8 OIOZB OTOTI |
DOI | 10.1063/1.4977429 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Sciences (General) Physics |
EISSN | 1529-7845 |
ExternalDocumentID | 1463125 28736460 10_1063_1_4977429 jpr |
Genre | Journal Article |
GrantInformation_xml | – fundername: Intramural NIST DOC grantid: 9999-NIST |
GroupedDBID | -~X .DC .GJ 0ZJ 2-P 29L 2WC 3O- 4.4 5GY 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABEFU ABFTF ABJNI ABTAH ACBRY ACGFO ACGFS ACKIV ACZLF ADCTM AEJMO AENEX AETEA AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AI. AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ASPBG ATXIE AVWKF AWQPM AZFZN BPZLN CS3 DU5 E3Z EBS EJD FDOHQ FFFMQ G8K HAM HH5 J23 M71 M73 N9A NEUPN NPSNA O-B OK1 P2P PQQKQ RDFOP RIP RNS ROL RQS T9H TN5 UHB UPT UQL VH1 VOH WH7 YQT ZE2 ZY4 ~02 AAGWI AAYXX ABDPE ABJGX ADMLS CITATION NPM 7X8 OIOZB OTOTI |
ID | FETCH-LOGICAL-c520t-61c320395c1a5a1b0a1dce6c868a69a98af0e279a39226e8926c4b4f0ac7a7ca3 |
ISSN | 0047-2689 |
IngestDate | Tue Nov 05 04:32:46 EST 2024 Sun Aug 24 03:30:20 EDT 2025 Sat May 31 02:11:08 EDT 2025 Thu Apr 24 22:58:42 EDT 2025 Tue Jul 01 00:22:14 EDT 2025 Fri Jun 21 00:14:45 EDT 2024 Sun Jul 14 10:20:33 EDT 2019 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | carbon dioxide Rainwater-Friend theory viscosity data analysis thermophysical properties critical enhancement thermodynamic scaling Carbon dioxide |
Language | English |
License | 0047-2689/2017/46(1)/013107/28/$47.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c520t-61c320395c1a5a1b0a1dce6c868a69a98af0e279a39226e8926c4b4f0ac7a7ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE FE0003931 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1463125 |
PMID | 28736460 |
PQID | 1923111014 |
PQPubID | 23479 |
PageCount | 28 |
ParticipantIDs | crossref_primary_10_1063_1_4977429 crossref_citationtrail_10_1063_1_4977429 proquest_miscellaneous_1923111014 scitation_primary_10_1063_1_4977429 osti_scitechconnect_1463125 pubmed_primary_28736460 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of physical and chemical reference data |
PublicationTitleAlternate | J Phys Chem Ref Data |
PublicationYear | 2017 |
Publisher | American Institute of Physics (AIP) |
Publisher_xml | – name: American Institute of Physics (AIP) |
References | Vogel, Hendl (c92) 1992; 79 Maitland, Smith (c76) 1970; 67 Huber, Laesecke, Xiang (c99) 2004; 224 Huber, Laesecke, Perkins (c101) 2003; 42 Abramson (c39) 2009; 80 van der Gulik (c48) 1997; 238 Hendl, Neumann, Vogel (c55) 1993; 25 Graham (c6) 1846; 136 Chen, Abbaci, Tang, Sengers (c42) 1990; 42 Stephan, Krauss, Laesecke (c102) 1987; 16 Pensado, Pádua, Comuñas, Fernández (c52) 2008; 44 Kestin, Whitelaw (c59) 1963; 29 Hellmann (c77) 2013; 111 Andrews (c41) 1869; 159 Berg (c110) 2005; 16 Jiang, Moultos, Economou, Panagiotopoulos (c116) 2016; 120 Friend, Rainwater (c90) 1984; 107 Zhong, Lai, Wang, Qiu, Lüdemann, Chen (c115) 2015; 60 Kestin, Whitelaw, Zien (c124) 1964; 30 van den Berg, ten Seldam, van der Gulik (c64) 1993; 246 Bhattacharjee, Ferrell, Basu, Sengers (c127) 1981; 24 Harris, Yung (c119) 1995; 99 Span, Wagner (c21) 1996; 25 Luettmer-Strathmann, Sengers, Olchowy (c126) 1995; 103 von Obermayer (c78) 1876; 73 Batschinski (c93) 1913; 84 Hildebrand (c94) 1971; 174 Huber, Laesecke, Perkins (c100) 2004; 18 Kestin, Wakeham, Ro (c83) 1972; 58 Estrada-Alexanders, Hurly (c49) 2008; 40 Hellmann (c22) 2014; 613 van der Gulik, Mostert, van den Berg (c70) 1991; 23 Meier, Laesecke, Kabelac (c118) 2004; 121 Wobser, Müller (c86) 1941; 52 Lewis, Nocera (c1) 2006; 103 Ashurst, Hoover (c105) 1975; 11 Miller, Litynski, Brickett, Morreale (c3) 2016; 62 Naldrett, Maass (c123) 1940; 18B Harris, Hope, Gough, Smith (c80) 1979; 75 Bukowski, Sadlej, Jeziorski, Jankowski, Szalewicz, Kucharski, Williams, Rice (c74) 1999; 110 van den Berg, ten Seldam, van der Gulik (c47) 1990; 167 Anderson, Lekkerkerker (c32) 2002; 416 Giordano, Datchi, Dewaele (c40) 2006; 125 Williamson (c44) 1869; 1 Bingham (c95) 1914; 36 Vesovic, Wakeham, Olchowy, Sengers, Watson, Millat (c12) 1990; 19 Timrot, Traktueva (c79) 1975; 22 Aimoli, Maginn, Abreu (c114) 2014; 141 Michels, Botzen, Schuurman (c63) 1957; 23 Huber, Laesecke (c98) 2006; 45 Altunin, Sakhabetdinov (c9) 1972; 19 Rainwater, Friend (c91) 1987; 36 Widom (c31) 1967; 157 Mal'tsev, Nerushev, Novopashin, Radchenko, Licht, Miller, Parekh (c50) 2004; 49 Palmer (c117) 1994; 49 Bock, Bich, Vogel, Dickinson, Vesovic (c75) 2002; 117 Mohr, Newell, Taylor (c89) 2016; 45 Huppert, Neufeld (c2) 2014; 46 Coriani, Halkier, Rizzo, Ruud (c30) 2000; 326 Fuentes-Herrera, Moreno-Razo, Guzmán, López-Lemus, Ibarra-Tandi (c35) 2016; 144 Haepp (c66) 1976; 9 Schäfer, Richter, Span (c57) 2015; 89 Heidaryan, Hatami, Rahimi, Moghadasi (c15) 2011; 56 Kurin, Golubev (c67) 1974; 21 Doolittle (c96) 1951; 22 Schröer, Becker (c122) 1935; 173 Davani, Falcone, Teodoriu, McCain (c53) 2012; 51 Hunter, Marsh, Matthews, Smith (c81) 1993; 14 Hoover, Gray, Johnson (c106) 1971; 55 Kestin, Khalifa, Ro, Wakeham (c88) 1977; 88A Cencek, Przybytek, Komasa, Mehl, Jeziorski, Szalewicz (c28) 2012; 136 Pádua, Wakeham, Wilhelm (c71) 1994; 15 Vogel, Span, Herrmann (c68) 2015; 44 Merker, Engin, Vrabec, Hasse (c113) 2010; 132 Berg, Moldover (c26) 1990; 93 Laesecke, Bair (c103) 2011; 32 DiPippo, Kestin, Whitelaw (c69) 1966; 32 Liang, Tsai (c112) 2010; 108 Ingebrigtsen, Schrøder, Dyre (c107) 2012; 2 Iwasaki, Takahashi (c125) 1981; 74 Laesecke, Krauss, Stephan, Wagner (c97) 1990; 19 Setzmann, Wagner (c36) 1991; 20 Locke, Stanwix, Hughes, Kisselev, Goodwin, Marsh, May (c56) 2014; 59 Dyre (c108) 2013; 88 Nieto-Draghi, de Bruin, Perez-Pellitero, Avalos, Mackie (c111) 2007; 126 Sih, Dehghani, Foster (c51) 2007; 41 Mason, Wright (c45) 1971; 12 Vogel, Küchenmeister, Bich, Laesecke (c24) 1998; 27 Golubev, Petrov (c62) 1953; 2 van den Berg, ten Seldam, van der Gulik (c65) 1993; 14 Larsen, Zukoski (c34) 2012; 136 Ashurst, Hoover (c104) 1975; 21 Vogel (c23) 2016; 37 Zhang, Duan (c120) 2005; 122 Johnston, McCloskey (c82) 1940; 44 Bücker, Wagner (c37) 2006; 35 Kundt, Warburg (c46) 1875; 155 Fenghour, Wakeham, Vesovic (c14) 1998; 27 Schmidt, Lipson (c84) 2009; 324 Vogel, Barkow (c54) 1986; 267 Kennedy, Thodos (c7) 1961; 7 Huber, Sykioti, Assael, Perkins (c128) 2016; 45 Kestin, Ro, Wakeham (c87) 1972; 56 Mulero A. (c33/c33_1) 2008 c49/c49_1 c85/c85_1 Maxwell J. C. (c5/c5_1) 1872 c92/c92_1 Vargaftik N. B. (c13/c13_1) 1996 c56/c56_1 c110/c110_1 c27/c27_1 c114/c114_1 c70/c70_1 c118/c118_1 Schröer E. (c122/c122_1) 1935; 173 c84/c84_1 c2/c2_1 c57/c57_1 c41/c41_1 c12/c12_1 c121/c121_1 c91/c91_1 c120/c120_1 c79/c79_1 c63/c63_1 c28/c28_1 c124/c124_1 c125/c125_1 c34/c34_1 c129/c129_1 c40/c40_1 c128/c128_1 c94/c94_1 Span R. (c38/c38_1) 1993 c47/c47_1 c7/c7_1 c83/c83_1 Bird R. B. (c4/c4_1) 2001 c36/c36_1 Touloukian Y. S. (c10/c10_1) 1975 c35/c35_1 c69/c69_1 c24/c24_1 c50/c50_1 c48/c48_1 Golubev I. F. (c62/c62_1) 1953; 2 Moldover M. (c58/c58_1) 2015 c93/c93_1 c95/c95_1 c59/c59_1 Wobser R. (c86/c86_1) 1941; 52 c101/c101_1 c82/c82_1 c103/c103_1 c26/c26_1 c105/c105_1 c107/c107_1 c6/c6_1 c71/c71_1 c25/c25_1 Wohlfarth C. (c20/c20_1) 2009 c37/c37_1 c14/c14_1 Cohen E. R. (c29/c29_1) 2008 c51/c51_1 c15/c15_1 Kurin V. I. (c67/c67_1) 1974; 21 c22/c22_1 c96/c96_1 c81/c81_1 c112/c112_1 Maitland G. C. (c76/c76_1) 1970; 67 c89/c89_1 c73/c73_1 c116/c116_1 Altunin V. V. (c9/c9_1) 1972; 19 c44/c44_1 Stephan K. (c11/c11_1) 1979 c39/c39_1 c23/c23_1 c75/c75_1 c46/c46_1 Wohlfarth C. (c19/c19_1) 2001 c52/c52_1 c3/c3_1 c45/c45_1 c97/c97_1 c123/c123_1 c126/c126_1 c80/c80_1 c127/c127_1 Hendl S. (c55/c55_1) 1993; 25 c68/c68_1 c74/c74_1 c31/c31_1 c65/c65_1 c1/c1_1 Docter A. (c60/c60_1) 1997 c42/c42_1 c90/c90_1 c111/c111_1 c113/c113_1 Chapman S. (c109/c109_1) 1970 Wohlfarth C. (c18/c18_1) 2001 c115/c115_1 c117/c117_1 c53/c53_1 c87/c87_1 c119/c119_1 von Obermayer A. (c78/c78_1) 1876; 73 c30/c30_1 c64/c64_1 c98/c98_1 c21/c21_1 c77/c77_1 c100/c100_1 c102/c102_1 Golubev I. F. (c8/c8_1) 1970 c32/c32_1 c66/c66_1 c104/c104_1 c106/c106_1 c108/c108_1 c99/c99_1 c54/c54_1 c88/c88_1 |
References_xml | – volume: 42 start-page: 3163 year: 2003 ident: c101 publication-title: Ind. Eng. Chem. Res. – volume: 24 start-page: 1469 year: 1981 ident: c127 publication-title: Phys. Rev. A – volume: 122 start-page: 214507 year: 2005 ident: c120 publication-title: J. Chem. Phys. – volume: 167 start-page: 457 year: 1990 ident: c47 publication-title: Physica A – volume: 49 start-page: 684 year: 2004 ident: c50 publication-title: J. Chem. Eng. Data – volume: 30 start-page: 161 year: 1964 ident: c124 publication-title: Physica – volume: 44 start-page: 1038 year: 1940 ident: c82 publication-title: J. Phys. Chem. – volume: 58 start-page: 165 year: 1972 ident: c83 publication-title: Physica – volume: 16 start-page: 11 year: 2005 ident: c110 publication-title: Metrologia – volume: 59 start-page: 1619 year: 2014 ident: c56 publication-title: J. Chem. Eng. Data – volume: 18 start-page: 968 year: 2004 ident: c100 publication-title: Energy Fuels – volume: 51 start-page: 15276 year: 2012 ident: c53 publication-title: Ind. Eng. Chem. Res. – volume: 41 start-page: 148 year: 2007 ident: c51 publication-title: J. Supercrit. Fluids – volume: 56 start-page: 4114 year: 1972 ident: c87 publication-title: J. Chem. Phys. – volume: 49 start-page: 359 year: 1994 ident: c117 publication-title: Phys. Rev. E – volume: 613 start-page: 133 year: 2014 ident: c22 publication-title: Chem. Phys. Lett. – volume: 103 start-page: 15729 year: 2006 ident: c1 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 74 start-page: 1930 year: 1981 ident: c125 publication-title: J. Chem. Phys. – volume: 7 start-page: 625 year: 1961 ident: c7 publication-title: AIChE J. – volume: 14 start-page: 819 year: 1993 ident: c81 publication-title: Int. J. Thermophys. – volume: 19 start-page: 124 year: 1972 ident: c9 publication-title: Therm. Eng. – volume: 40 start-page: 193 year: 2008 ident: c49 publication-title: J. Chem. Thermodyn. – volume: 155 start-page: 525 year: 1875 ident: c46 publication-title: Pogg. Ann. – volume: 73 start-page: 433 year: 1876 ident: c78 publication-title: Wien. Ber. – volume: 120 start-page: 984 year: 2016 ident: c116 publication-title: J. Phys. Chem. B – volume: 416 start-page: 811 year: 2002 ident: c32 publication-title: Nature – volume: 80 start-page: 021201 year: 2009 ident: c39 publication-title: Phys. Rev. E – volume: 14 start-page: 865 year: 1993 ident: c65 publication-title: Int. J. Thermophys. – volume: 173 start-page: 178 year: 1935 ident: c122 publication-title: Z. Phys. Chem. A – volume: 19 start-page: 763 year: 1990 ident: c12 publication-title: J. Phys. Chem. Ref. Data – volume: 99 start-page: 12021 year: 1995 ident: c119 publication-title: J. Phys. Chem. – volume: 22 start-page: 105 year: 1975 ident: c79 publication-title: Therm. Eng. – volume: 42 start-page: 4470 year: 1990 ident: c42 publication-title: Phys. Rev. A – volume: 21 start-page: 410 year: 1975 ident: c104 publication-title: AIChE J. – volume: 56 start-page: 144 year: 2011 ident: c15 publication-title: J. Supercrit. Fluids – volume: 157 start-page: 375 year: 1967 ident: c31 publication-title: Science – volume: 126 start-page: 064509 year: 2007 ident: c111 publication-title: J. Chem. Phys. – volume: 11 start-page: 658 year: 1975 ident: c105 publication-title: Phys. Rev. A – volume: 88 start-page: 042139 year: 2013 ident: c108 publication-title: Phys. Rev. E – volume: 1 start-page: 20 year: 1869 ident: c44 publication-title: Nature – volume: 67 start-page: 631 year: 1970 ident: c76 publication-title: J. Chim. Phys. Phys.-Chim. Biol. – volume: 103 start-page: 7482 year: 1995 ident: c126 publication-title: J. Chem. Phys. – volume: 12 start-page: 179 year: 1971 ident: c45 publication-title: Contemp. Phys. – volume: 174 start-page: 490 year: 1971 ident: c94 publication-title: Science – volume: 55 start-page: 1128 year: 1971 ident: c106 publication-title: J. Chem. Phys. – volume: 89 start-page: 7 year: 2015 ident: c57 publication-title: J. Chem. Thermodyn. – volume: 144 start-page: 214502 year: 2016 ident: c35 publication-title: J. Chem. Phys. – volume: 326 start-page: 269 year: 2000 ident: c30 publication-title: Chem. Phys. Lett. – volume: 29 start-page: 335 year: 1963 ident: c59 publication-title: Physica – volume: 136 start-page: 054901 year: 2012 ident: c34 publication-title: J. Chem. Phys. – volume: 23 start-page: 87 year: 1991 ident: c70 publication-title: High Temp. - High Pressures – volume: 2 start-page: 011011 year: 2012 ident: c107 publication-title: Phys. Rev. X – volume: 45 start-page: 043102 year: 2016 ident: c89 publication-title: J. Phys. Chem. Ref. Data – volume: 88A start-page: 242 year: 1977 ident: c88 publication-title: Physica A – volume: 238 start-page: 81 year: 1997 ident: c48 publication-title: Physica A – volume: 25 start-page: 503 year: 1993 ident: c55 publication-title: High Temp. - High Pressures – volume: 246 start-page: 1 year: 1993 ident: c64 publication-title: J. Fluid Mech. – volume: 141 start-page: 134101 year: 2014 ident: c114 publication-title: J. Chem. Phys. – volume: 25 start-page: 1509 year: 1996 ident: c21 publication-title: J. Phys. Chem. Ref. Data – volume: 36 start-page: 1393 year: 1914 ident: c95 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 281 year: 1976 ident: c66 publication-title: Warme Stoffubertragung – volume: 22 start-page: 1471 year: 1951 ident: c96 publication-title: J. Appl. Phys. – volume: 93 start-page: 1926 year: 1990 ident: c26 publication-title: J. Chem. Phys. – volume: 2 start-page: 5 year: 1953 ident: c62 publication-title: Trudy GIAP – volume: 19 start-page: 1089 year: 1990 ident: c97 publication-title: J. Phys. Chem. Ref. Data – volume: 132 start-page: 234512 year: 2010 ident: c113 publication-title: J. Chem. Phys. – volume: 32 start-page: 925 year: 2011 ident: c103 publication-title: Int. J. Thermophys. – volume: 46 start-page: 255 year: 2014 ident: c2 publication-title: Annu. Rev. Fluid Mech. – volume: 52 start-page: 165 year: 1941 ident: c86 publication-title: Kolloid-Beih. – volume: 75 start-page: 892 year: 1979 ident: c80 publication-title: J. Chem. Soc., Faraday Trans. 1 – volume: 125 start-page: 054504 year: 2006 ident: c40 publication-title: J. Chem. Phys. – volume: 159 start-page: 575 year: 1869 ident: c41 publication-title: Philos. Trans. R. Soc. London – volume: 44 start-page: 172 year: 2008 ident: c52 publication-title: J. Supercrit. Fluids – volume: 136 start-page: 224303 year: 2012 ident: c28 publication-title: J. Chem. Phys. – volume: 16 start-page: 993 year: 1987 ident: c102 publication-title: J. Phys. Chem. Ref. Data – volume: 324 start-page: 81 year: 2009 ident: c84 publication-title: Science – volume: 111 start-page: 387 year: 2013 ident: c77 publication-title: Mol. Phys. – volume: 110 start-page: 3785 year: 1999 ident: c74 publication-title: J. Chem. Phys. – volume: 36 start-page: 4062 year: 1987 ident: c91 publication-title: Phys. Rev. A – volume: 60 start-page: 2188 year: 2015 ident: c115 publication-title: J. Chem. Eng. Data – volume: 20 start-page: 1061 year: 1991 ident: c36 publication-title: J. Phys. Chem. Ref. Data – volume: 44 start-page: 043101 year: 2015 ident: c68 publication-title: J. Phys. Chem. Ref. Data – volume: 37 start-page: 63 year: 2016 ident: c23 publication-title: Int. J. Thermophys. – volume: 27 start-page: 947 year: 1998 ident: c24 publication-title: J. Phys. Chem. Ref. Data – volume: 18B start-page: 322 year: 1940 ident: c123 publication-title: Can. J. Res. – volume: 35 start-page: 205 year: 2006 ident: c37 publication-title: J. Phys. Chem. Ref. Data – volume: 32 start-page: 2064 year: 1966 ident: c69 publication-title: Physica – volume: 45 start-page: 013102 year: 2016 ident: c128 publication-title: J. Phys. Chem. Ref. Data – volume: 79 start-page: 313 year: 1992 ident: c92 publication-title: Fluid Phase Equilib. – volume: 121 start-page: 3671 year: 2004 ident: c118 publication-title: J. Chem. Phys. – volume: 62 start-page: 2 year: 2016 ident: c3 publication-title: AIChE J. – volume: 117 start-page: 2151 year: 2002 ident: c75 publication-title: J. Chem. Phys. – volume: 107 start-page: 590 year: 1984 ident: c90 publication-title: Chem. Phys. Lett. – volume: 15 start-page: 767 year: 1994 ident: c71 publication-title: Int. J. Thermophys. – volume: 21 start-page: 125 year: 1974 ident: c67 publication-title: Therm. Eng. – volume: 27 start-page: 31 year: 1998 ident: c14 publication-title: J. Phys. Chem. Ref. Data – volume: 23 start-page: 95 year: 1957 ident: c63 publication-title: Physica – volume: 224 start-page: 263 year: 2004 ident: c99 publication-title: Fluid Phase Equilib. – volume: 136 start-page: 573 year: 1846 ident: c6 publication-title: Philos. Trans. R. Soc. London – volume: 84 start-page: 643 year: 1913 ident: c93 publication-title: Z. Phys. Chem. – volume: 267 start-page: 1038 year: 1986 ident: c54 publication-title: Z. Phys. Chem. – volume: 108 start-page: 1285 year: 2010 ident: c112 publication-title: Mol. Phys. – volume: 45 start-page: 4447 year: 2006 ident: c98 publication-title: Ind. Eng. Chem. Res. – volume-title: IUPAC Green Book on Quantities, Units and Symbols in Physical Chemistry year: 2008 ident: c29/c29_1 – ident: c66/c66_1 doi: 10.1007/bf01003580 – volume: 67 start-page: 631 year: 1970 ident: c76/c76_1 publication-title: J. Chim. Phys. Phys.-Chim. Biol. doi: 10.1051/jcp/1970670631 – ident: c92/c92_1 doi: 10.1016/0378-3812(92)85140-4 – ident: c100/c100_1 doi: 10.1021/ef034109e – volume-title: Handbook of Physical Properties of Liquids and Gases year: 1996 ident: c13/c13_1 doi: 10.1615/978-1-56700-063-4.0 – ident: c81/c81_1 doi: 10.1007/bf00502110 – ident: c94/c94_1 doi: 10.1126/science.174.4008.490 – ident: c25/c25_1 – ident: c97/c97_1 doi: 10.1063/1.555863 – ident: c93/c93_1 doi: 10.1515/zpch-1913-0142 – volume-title: Eine neue Fundamentalgleichung für das Fluide Zustandsgebiet von Kohlendioxid bei Temperaturen bis zu 1100 K und Drücken bis zu 800 MPa year: 1993 ident: c38/c38_1 – ident: c63/c63_1 doi: 10.1016/s0031-8914(57)90708-5 – ident: c103/c103_1 doi: 10.1007/s10765-011-0978-y – ident: c118/c118_1 doi: 10.1063/1.1770695 – ident: c70/c70_1 doi: 10.1016/0378-3812(92)85139-y – ident: c87/c87_1 doi: 10.1063/1.1677823 – volume: 173 start-page: 178 year: 1935 ident: c122/c122_1 publication-title: Z. Phys. Chem. A doi: 10.1515/zpch-1935-17321 – volume: 19 start-page: 124 year: 1972 ident: c9/c9_1 publication-title: Therm. Eng. – ident: c14/c14_1 doi: 10.1063/1.556013 – ident: c110/c110_1 doi: 10.1088/0026-1394/42/1/002 – ident: c39/c39_1 doi: 10.1103/physreve.80.021201 – ident: c54/c54_1 doi: 10.1515/zpch-1986-01135 – ident: c42/c42_1 doi: 10.1103/physreva.42.4470 – ident: c37/c37_1 doi: 10.1063/1.1859286 – ident: c79/c79_1 doi: 10.1016/b978-0-08-027284-9.50043-7 – ident: c2/c2_1 doi: 10.1146/annurev-fluid-011212-140627 – ident: c64/c64_1 doi: 10.1017/s0022112093000011 – ident: c127/c127_1 doi: 10.1103/physreva.24.1469 – ident: c40/c40_1 doi: 10.1063/1.2215609 – ident: c52/c52_1 doi: 10.1016/j.supflu.2007.10.004 – ident: c6/c6_1 doi: 10.1098/rstl.1846.0029 – ident: c104/c104_1 doi: 10.1002/aic.690210233 – ident: c28/c28_1 doi: 10.1063/1.4712218 – volume-title: 19th Symposium on Thermophysical Properties year: 2015 ident: c58/c58_1 – ident: c84/c84_1 doi: 10.1126/science.1165893 – ident: c108/c108_1 doi: 10.1103/physreve.88.042139 – volume-title: Viscosity year: 1975 ident: c10/c10_1 doi: 10.1007/978-1-4757-1628-3 – ident: c85/c85_1 doi: 10.1007/978-1-4419-1626-6_5 – ident: c82/c82_1 doi: 10.1021/j150405a004 – ident: c56/c56_1 doi: 10.1021/je500083n – ident: c24/c24_1 doi: 10.1063/1.556025 – ident: c112/c112_1 doi: 10.1080/00268971003670873 – volume-title: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology year: 2001 ident: c18/c18_1 – ident: c59/c59_1 doi: 10.1016/s0031-8914(63)80294-3 – ident: c48/c48_1 doi: 10.1016/s0378-4371(96)00466-9 – volume: 21 start-page: 125 year: 1974 ident: c67/c67_1 publication-title: Therm. Eng. – ident: c46/c46_1 doi: 10.1002/andp.18752310803 – ident: c77/c77_1 doi: 10.1080/00268976.2012.726379 – volume: 25 start-page: 503 year: 1993 ident: c55/c55_1 publication-title: High Temp. - High Pressures – volume-title: Viscosity of Dense Fluids year: 1979 ident: c11/c11_1 doi: 10.1007/978-1-4757-6931-9 – ident: c96/c96_1 doi: 10.1063/1.1699894 – ident: c116/c116_1 doi: 10.1021/acs.jpcb.5b11701 – ident: c49/c49_1 doi: 10.1016/j.jct.2007.07.002 – ident: c98/c98_1 doi: 10.1021/ie060560s – ident: c68/c68_1 doi: 10.1063/1.4930838 – ident: c125/c125_1 doi: 10.1063/1.441286 – ident: c74/c74_1 doi: 10.1063/1.479108 – ident: c30/c30_1 doi: 10.1016/s0009-2614(00)00793-4 – ident: c90/c90_1 doi: 10.1016/s0009-2614(84)85163-5 – ident: c126/c126_1 doi: 10.1103/physrevb.52.6285 – ident: c7/c7_1 doi: 10.1002/aic.690070419 – ident: c51/c51_1 doi: 10.1016/j.supflu.2006.09.002 – ident: c44/c44_1 doi: 10.1038/001020a0 – volume-title: Lecture Notes in Physics year: 2008 ident: c33/c33_1 – ident: c114/c114_1 doi: 10.1063/1.4896538 – ident: c128/c128_1 doi: 10.1063/1.4940892 – ident: c105/c105_1 doi: 10.1103/physreva.11.658 – ident: c80/c80_1 doi: 10.1039/f19797500892 – volume: 52 start-page: 165 year: 1941 ident: c86/c86_1 publication-title: Kolloid-Beih. doi: 10.1007/BF02564872 – ident: c1/c1_1 doi: 10.1073/pnas.0603395103 – ident: c106/c106_1 doi: 10.1063/1.1676196 – ident: c107/c107_1 doi: 10.1103/physrevx.2.011011 – ident: c3/c3_1 doi: 10.1002/aic.15066 – ident: c117/c117_1 doi: 10.1103/physreve.49.359 – ident: c89/c89_1 doi: 10.1063/1.4954402 – ident: c26/c26_1 doi: 10.1063/1.459679 – ident: c73/c73_1 – ident: c41/c41_1 doi: 10.1098/rstl.1869.0021 – ident: c75/c75_1 doi: 10.1063/1.1486438 – volume-title: Theory of Heat year: 1872 ident: c5/c5_1 – ident: c22/c22_1 doi: 10.1007/978-3-642-72021-5_40 – ident: c27/c27_1 – ident: c88/c88_1 doi: 10.1016/0378-4371(77)90003-6 – ident: c15/c15_1 doi: 10.1016/j.supflu.2010.12.006 – ident: c65/c65_1 doi: 10.1007/bf00502113 – volume-title: Transport Phenomena year: 2001 ident: c4/c4_1 – volume-title: Viscosity of Gases and Gas Mixtures. A Handbook year: 1970 ident: c8/c8_1 – ident: c32/c32_1 doi: 10.1038/416811a – ident: c113/c113_1 doi: 10.1063/1.3434530 – volume-title: The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases year: 1970 ident: c109/c109_1 – volume-title: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology year: 2001 ident: c19/c19_1 – ident: c83/c83_1 doi: 10.1016/0031-8914(72)90276-5 – ident: c31/c31_1 doi: 10.1126/science.157.3787.375 – volume-title: Entwicklung und Aufbau einer Anlage zur Simultanen Messung der Viskosität und der Dichte Fluider Stoffe year: 1997 ident: c60/c60_1 – ident: c53/c53_1 doi: 10.1021/ie301751y – ident: c91/c91_1 doi: 10.1103/physreva.36.4062 – ident: c129/c129_1 – ident: c47/c47_1 doi: 10.1016/0378-4371(90)90127-e – volume-title: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology year: 2009 ident: c20/c20_1 – ident: c69/c69_1 doi: 10.1016/0031-8914(66)90169-8 – ident: c21/c21_1 doi: 10.1063/1.555991 – ident: c111/c111_1 doi: 10.1063/1.2434960 – volume: 2 start-page: 5 year: 1953 ident: c62/c62_1 publication-title: Trudy GIAP – ident: c121/c121_1 – ident: c102/c102_1 doi: 10.1063/1.555798 – ident: c123/c123_1 doi: 10.1139/cjr40b-041 – ident: c12/c12_1 doi: 10.1063/1.555875 – ident: c119/c119_1 doi: 10.1021/j100031a034 – ident: c99/c99_1 doi: 10.1016/j.fluid.2004.07.012 – ident: c115/c115_1 doi: 10.1021/je5009526 – ident: c120/c120_1 doi: 10.1063/1.1924700 – ident: c57/c57_1 doi: 10.1016/j.jct.2015.04.015 – ident: c124/c124_1 doi: 10.1016/0031-8914(64)90211-3 – ident: c50/c50_1 doi: 10.1021/je0342419 – ident: c36/c36_1 doi: 10.1063/1.555898 – ident: c45/c45_1 doi: 10.1080/00107517108205263 – ident: c101/c101_1 doi: 10.1021/ie0300880 – ident: c71/c71_1 doi: 10.1007/bf01447093 – ident: c35/c35_1 doi: 10.1063/1.4953002 – volume: 73 start-page: 433 year: 1876 ident: c78/c78_1 publication-title: Wien. Ber. – ident: c23/c23_1 doi: 10.1007/s10765-016-2068-7 – ident: c95/c95_1 doi: 10.1021/ja02184a005 – ident: c34/c34_1 doi: 10.1063/1.3679169 |
SSID | ssj0007882 |
Score | 2.5058308 |
Snippet | A comprehensive database of experimental and computed data for the viscosity of
carbon dioxide
(CO2) was compiled and a new reference correlation was... A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO ) was compiled and a new reference correlation was... A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was... |
SourceID | osti proquest pubmed crossref scitation |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 13107 |
SubjectTerms | INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY |
Title | Reference Correlation for the Viscosity of Carbon Dioxide |
URI | http://dx.doi.org/10.1063/1.4977429 https://www.ncbi.nlm.nih.gov/pubmed/28736460 https://www.proquest.com/docview/1923111014 https://www.osti.gov/servlets/purl/1463125 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5RAEJ7oNab2wdjTKlbN-uOhpuGEZVng8XKnaYz6Ymv6RpZliZc0cDmoqf3rnYVlubMXU30hhFvg2G-Y_XaZ-QbgrZcrpXyRu5JHuctCX7kxDrtuoavCelz5QdEGyH7lJ2fs03l4PlTpa7NLmmwir7fmlfwPqngMcdVZsv-ArL0oHsB9xBe3iDBub4XxoBI700U2LjYDB78valkNOVirDH-bL6qrRb4Z_jNQ0mUPWpvs1ksJ2EokxyaRzSg1qlrJLrRnuiqrAbnr8peVLTieT9bXFXCssoFVva_UGg68K_AzUcY90sSN4k4AsvefZglx3U46Z-gHpqLtDTeNvEivGEyYZp9mxWNDCvuPIcoGDrafzHmQ-qk59S7sUJwg0BHsTOdfPn-zozBO7TulePMUvaoUD97b-25wkVGFPnXbPGMPdpGNdIERa9zj9CE8MAiRaWcB-3BHlWPYnfW1-sZwrw3klfUY9o2zrsmRURR_9wgSayhkzVAIGgpBQyHWUEhVkM5QiDGUx3D28cPp7MQ1NTNcGVKvcbkvA-oFSSh9EQo_84SfS8VlzGPBE5HEovAUjRKBvJhyFSeUS5axwhMyEpEUwQGMyqpUT4FwEeF4IJkqWMwEy0SCfIridfEMJObCgaO-99K-f3Rdk4v0BkoOvLZNl52KyrZGhxqCVHe2kj-kDvSSjZ6bBsjCHXjVI5Ni5-rPWqJU1WWdtnMUX9ecduBJB5m9CY2jgDPuOfDGYvi3f7Cl1c9qNbRIl3nx7DYPcwj3h5fqOYya1aV6gfS1yV4aS_0NzM2V0A |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reference+Correlation+for+the+Viscosity+of+Carbon+Dioxide&rft.jtitle=Journal+of+physical+and+chemical+reference+data&rft.au=Laesecke%2C+Arno&rft.au=Muzny%2C+Chris+D.&rft.date=2017-03-01&rft.issn=0047-2689&rft.eissn=1529-7845&rft.volume=46&rft.issue=1&rft.spage=13107&rft_id=info:doi/10.1063%2F1.4977429&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4977429 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-2689&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-2689&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-2689&client=summon |