Reference Correlation for the Viscosity of Carbon Dioxide

A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was developed. Literature results based on an ab initio potential energy surface were the foundation of the correlation of the viscosity in the limit of z...

Full description

Saved in:
Bibliographic Details
Published inJournal of physical and chemical reference data Vol. 46; no. 1; pp. 13107 - 13134
Main Authors Laesecke, Arno, Muzny, Chris D.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics (AIP) 01.03.2017
Subjects
Online AccessGet full text
ISSN0047-2689
1529-7845
DOI10.1063/1.4977429

Cover

Loading…
Abstract A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was developed. Literature results based on an ab initio potential energy surface were the foundation of the correlation of the viscosity in the limit of zero density in the temperature range from 100 to 2000 K. Guided symbolic regression was employed to obtain a new functional form that extrapolates correctly to 0 and to 10 000 K. Coordinated measurements at low density made it possible to implement the temperature dependence of the Rainwater-Friend theory in the linear-in-density viscosity term. The residual viscosity could be formulated with a scaling term ρ γ /T, the significance of which was confirmed by symbolic regression. The final viscosity correlation covers temperatures from 100 to 2000 K for gaseous CO2 and from 220 to 700 K with pressures along the melting line up to 8000 MPa for compressed and supercritical liquid states. The data representation is more accurate than with the previous correlations, and the covered pressure and temperature range is significantly extended. The critical enhancement of the viscosity of CO2 is included in the new correlation.
AbstractList A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO ) was compiled and a new reference correlation was developed. Literature results based on an potential energy surface were the foundation of the correlation of the viscosity in the limit of zero density in the temperature range from 100 K to 2000 K. Guided symbolic regression was employed to obtain a new functional form that extrapolates correctly to → 0 K and to 10 000 K. Coordinated measurements at low density made it possible to implement the temperature dependence of the Rainwater-Friend theory in the linear-in-density viscosity term. The residual viscosity could be formulated with a scaling term / the significance of which was confirmed by symbolic regression. The final viscosity correlation covers temperatures from 100 K to 2000 K for gaseous CO , and from 220 K to 700 K with pressures along the melting line up to 8000 MPa for compressed and supercritical liquid states. The data representation is more accurate than with the previous correlations, and the covered pressure and temperature range is significantly extended. The critical enhancement of the viscosity of CO is included in the new correlation.
A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was developed. Literature results based on an ab initio potential energy surface were the foundation of the correlation of the viscosity in the limit of zero density in the temperature range from 100 K to 2000 K. Guided symbolic regression was employed to obtain a new functional form that extrapolates correctly to T → 0 K and to 10 000 K. Coordinated measurements at low density made it possible to implement the temperature dependence of the Rainwater-Friend theory in the linear-in-density viscosity term. The residual viscosity could be formulated with a scaling term ργ/T the significance of which was confirmed by symbolic regression. The final viscosity correlation covers temperatures from 100 K to 2000 K for gaseous CO2, and from 220 K to 700 K with pressures along the melting line up to 8000 MPa for compressed and supercritical liquid states. The data representation is more accurate than with the previous correlations, and the covered pressure and temperature range is significantly extended. The critical enhancement of the viscosity of CO2 is included in the new correlation.
A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was developed. Literature results based on an ab initio potential energy surface were the foundation of the correlation of the viscosity in the limit of zero density in the temperature range from 100 to 2000 K. Guided symbolic regression was employed to obtain a new functional form that extrapolates correctly to 0 and to 10 000 K. Coordinated measurements at low density made it possible to implement the temperature dependence of the Rainwater-Friend theory in the linear-in-density viscosity term. The residual viscosity could be formulated with a scaling term ρ γ /T, the significance of which was confirmed by symbolic regression. The final viscosity correlation covers temperatures from 100 to 2000 K for gaseous CO2 and from 220 to 700 K with pressures along the melting line up to 8000 MPa for compressed and supercritical liquid states. The data representation is more accurate than with the previous correlations, and the covered pressure and temperature range is significantly extended. The critical enhancement of the viscosity of CO2 is included in the new correlation.
A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was developed. Literature results based on an ab initio potential energy surface were the foundation of the correlation of the viscosity in the limit of zero density in the temperature range from 100 K to 2000 K. Guided symbolic regression was employed to obtain a new functional form that extrapolates correctly to T → 0 K and to 10 000 K. Coordinated measurements at low density made it possible to implement the temperature dependence of the Rainwater-Friend theory in the linear-in-density viscosity term. The residual viscosity could be formulated with a scaling term ργ /T the significance of which was confirmed by symbolic regression. The final viscosity correlation covers temperatures from 100 K to 2000 K for gaseous CO2, and from 220 K to 700 K with pressures along the melting line up to 8000 MPa for compressed and supercritical liquid states. The data representation is more accurate than with the previous correlations, and the covered pressure and temperature range is significantly extended. The critical enhancement of the viscosity of CO2 is included in the new correlation.A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was developed. Literature results based on an ab initio potential energy surface were the foundation of the correlation of the viscosity in the limit of zero density in the temperature range from 100 K to 2000 K. Guided symbolic regression was employed to obtain a new functional form that extrapolates correctly to T → 0 K and to 10 000 K. Coordinated measurements at low density made it possible to implement the temperature dependence of the Rainwater-Friend theory in the linear-in-density viscosity term. The residual viscosity could be formulated with a scaling term ργ /T the significance of which was confirmed by symbolic regression. The final viscosity correlation covers temperatures from 100 K to 2000 K for gaseous CO2, and from 220 K to 700 K with pressures along the melting line up to 8000 MPa for compressed and supercritical liquid states. The data representation is more accurate than with the previous correlations, and the covered pressure and temperature range is significantly extended. The critical enhancement of the viscosity of CO2 is included in the new correlation.
Author Muzny, Chris D.
Laesecke, Arno
Author_xml – sequence: 1
  givenname: Arno
  surname: Laesecke
  fullname: Laesecke, Arno
  email: Arno.Laesecke@Boulder.NIST.Gov
  organization: Material Measurement Laboratory, Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3337, USA
– sequence: 2
  givenname: Chris D.
  surname: Muzny
  fullname: Muzny, Chris D.
  organization: Material Measurement Laboratory, Applied Chemicals and Materials Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3337, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28736460$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1463125$$D View this record in Osti.gov
BookMark eNqd0E1rGzEQBmARXBrb7SF_ICw5NYVNNJJWH8fgpm3AUChtr0KWZ4nCeuVIcoj_fTa1TSDklJMO88w74p2QUR97JOQE6AVQyS_hQhilBDNHZAwNM7XSohmRMaVC1Uxqc0wmOd9RSpXW7CM5ZlpxKSQdE_MbW0zYe6xmMSXsXAmxr9qYqnKL1b-QfcyhbKvYVjOXFsPsW4iPYYmfyIfWdRk_798p-fv9-s_sZz3_9eNmdjWvfcNoqSV4zig3jQfXOFhQB0uP0mupnTTOaNdSZMo4bhiTqA2TXixES51XTnnHp-RslxtzCTb7UNDf-tj36IsFITmwZkBfdmid4v0Gc7Gr4efYda7HuMkWDOMAQEEM9HRPN4sVLu06hZVLW3voZACXO-BTzDlha4eb_2spyYXOArXPrVuw-9aHjfNXG4fQt-zXnc2H1Pfhh5heoF0vW_4Ew1ua8w
CODEN JPCRBU
CitedBy_id crossref_primary_10_1016_j_ijrefrig_2023_04_019
crossref_primary_10_1016_j_jngse_2020_103271
crossref_primary_10_1021_acs_energyfuels_4c04887
crossref_primary_10_1016_j_enconman_2021_114568
crossref_primary_10_3847_PSJ_abbc14
crossref_primary_10_1007_s10765_022_03074_1
crossref_primary_10_1016_j_petrol_2021_109359
crossref_primary_10_1016_j_jct_2022_106957
crossref_primary_10_1016_j_jrmge_2022_03_014
crossref_primary_10_1063_5_0236883
crossref_primary_10_1016_j_ijhydene_2024_06_244
crossref_primary_10_1088_1742_6596_2076_1_012030
crossref_primary_10_1016_j_energy_2025_135231
crossref_primary_10_1021_acs_energyfuels_3c02784
crossref_primary_10_1016_j_supflu_2023_105966
crossref_primary_10_1007_s11814_022_1316_8
crossref_primary_10_1016_j_fluid_2021_112951
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124888
crossref_primary_10_2118_225428_PA
crossref_primary_10_1063_1_5036625
crossref_primary_10_1016_j_jct_2020_106266
crossref_primary_10_1021_acs_iecr_1c02154
crossref_primary_10_1007_s10765_024_03482_5
crossref_primary_10_1115_1_4054212
crossref_primary_10_1016_j_tsep_2020_100647
crossref_primary_10_1021_acs_energyfuels_4c00824
crossref_primary_10_1016_j_applthermaleng_2021_117201
crossref_primary_10_1016_j_fuel_2021_122947
crossref_primary_10_1007_s10765_023_03233_y
crossref_primary_10_1021_acs_jced_0c01009
crossref_primary_10_1021_acs_jpclett_1c01594
crossref_primary_10_1016_j_molliq_2017_12_010
crossref_primary_10_1016_j_supflu_2018_07_002
crossref_primary_10_1038_s41598_019_44687_1
crossref_primary_10_1016_j_ijrefrig_2020_11_020
crossref_primary_10_1016_j_supflu_2020_104939
crossref_primary_10_1016_j_supflu_2019_104578
crossref_primary_10_1007_s10765_022_03096_9
crossref_primary_10_1088_1681_7575_ad435e
crossref_primary_10_1088_1681_7575_ad435d
crossref_primary_10_1016_j_jct_2024_107345
crossref_primary_10_1007_s10765_017_2305_8
crossref_primary_10_1016_j_ceramint_2023_03_121
crossref_primary_10_1016_j_supflu_2024_106338
crossref_primary_10_1016_j_jcou_2019_02_022
crossref_primary_10_1016_j_supflu_2023_105860
crossref_primary_10_1016_j_molliq_2022_120479
crossref_primary_10_1021_acs_iecr_2c01427
crossref_primary_10_1016_j_icarus_2019_113438
crossref_primary_10_1016_j_ijrefrig_2017_07_016
crossref_primary_10_1021_acs_jced_4c00336
crossref_primary_10_1016_j_egyr_2024_05_009
crossref_primary_10_1063_1_5057413
crossref_primary_10_1016_j_geoen_2023_211727
crossref_primary_10_1021_acs_iecr_1c03508
crossref_primary_10_1002_ese3_736
crossref_primary_10_1021_acs_jced_4c00451
crossref_primary_10_1063_5_0250064
crossref_primary_10_17122_ntj_oil_2021_4_9_25
crossref_primary_10_1016_j_jct_2023_107212
crossref_primary_10_1016_j_supflu_2022_105533
crossref_primary_10_3390_molecules29112529
crossref_primary_10_1115_1_4066654
crossref_primary_10_1002_ceat_202200189
crossref_primary_10_1007_s10765_024_03492_3
crossref_primary_10_1007_s11630_019_1118_4
crossref_primary_10_1016_j_polymer_2024_127373
crossref_primary_10_1016_j_tsep_2024_102442
crossref_primary_10_1063_1_5020802
crossref_primary_10_1016_j_fluid_2019_112280
crossref_primary_10_1016_j_fuel_2019_04_017
crossref_primary_10_1016_j_geoen_2024_212763
crossref_primary_10_1021_acs_jced_4c00268
crossref_primary_10_1021_acs_jced_7b01069
crossref_primary_10_1039_D2CP02701A
crossref_primary_10_1016_j_heliyon_2023_e13030
crossref_primary_10_1029_2020JE006485
crossref_primary_10_2139_ssrn_4097929
crossref_primary_10_1021_acs_jpcb_3c06813
crossref_primary_10_1016_j_supflu_2024_106237
crossref_primary_10_1021_acs_jced_0c00209
crossref_primary_10_1016_j_supflu_2020_105141
crossref_primary_10_1016_j_molliq_2018_12_123
crossref_primary_10_3390_cryst11030305
crossref_primary_10_1007_s11242_019_01278_y
crossref_primary_10_1115_1_4066709
crossref_primary_10_1016_j_geoen_2024_213321
crossref_primary_10_1021_acs_jced_4c00083
crossref_primary_10_1016_j_marpetgeo_2024_107195
crossref_primary_10_1021_acs_energyfuels_4c03699
crossref_primary_10_1016_j_supflu_2023_106003
crossref_primary_10_1016_j_cej_2024_159179
crossref_primary_10_1016_j_cpc_2024_109407
crossref_primary_10_1016_j_seta_2022_101965
crossref_primary_10_1016_j_molliq_2020_113208
crossref_primary_10_1016_j_energy_2019_02_055
crossref_primary_10_1007_s10765_021_02927_5
crossref_primary_10_1016_j_molliq_2022_119184
crossref_primary_10_1021_acs_jced_0c00228
crossref_primary_10_1016_j_molliq_2022_120799
crossref_primary_10_1021_acs_jced_0c00749
crossref_primary_10_1073_pnas_1815943116
crossref_primary_10_1134_S1990793121070022
crossref_primary_10_1021_acs_jpcc_3c02264
crossref_primary_10_1016_j_fluid_2024_114178
crossref_primary_10_1039_D0CP04985A
crossref_primary_10_1007_s10765_021_02897_8
crossref_primary_10_1007_s10765_019_2544_y
crossref_primary_10_1016_j_engfracmech_2021_107548
Cites_doi 10.1007/bf01003580
10.1051/jcp/1970670631
10.1016/0378-3812(92)85140-4
10.1021/ef034109e
10.1615/978-1-56700-063-4.0
10.1007/bf00502110
10.1126/science.174.4008.490
10.1063/1.555863
10.1515/zpch-1913-0142
10.1016/s0031-8914(57)90708-5
10.1007/s10765-011-0978-y
10.1063/1.1770695
10.1016/0378-3812(92)85139-y
10.1063/1.1677823
10.1515/zpch-1935-17321
10.1063/1.556013
10.1088/0026-1394/42/1/002
10.1103/physreve.80.021201
10.1515/zpch-1986-01135
10.1103/physreva.42.4470
10.1063/1.1859286
10.1016/b978-0-08-027284-9.50043-7
10.1146/annurev-fluid-011212-140627
10.1017/s0022112093000011
10.1103/physreva.24.1469
10.1063/1.2215609
10.1016/j.supflu.2007.10.004
10.1098/rstl.1846.0029
10.1002/aic.690210233
10.1063/1.4712218
10.1126/science.1165893
10.1103/physreve.88.042139
10.1007/978-1-4757-1628-3
10.1007/978-1-4419-1626-6_5
10.1021/j150405a004
10.1021/je500083n
10.1063/1.556025
10.1080/00268971003670873
10.1016/s0031-8914(63)80294-3
10.1016/s0378-4371(96)00466-9
10.1002/andp.18752310803
10.1080/00268976.2012.726379
10.1007/978-1-4757-6931-9
10.1063/1.1699894
10.1021/acs.jpcb.5b11701
10.1016/j.jct.2007.07.002
10.1021/ie060560s
10.1063/1.4930838
10.1063/1.441286
10.1063/1.479108
10.1016/s0009-2614(00)00793-4
10.1016/s0009-2614(84)85163-5
10.1103/physrevb.52.6285
10.1002/aic.690070419
10.1016/j.supflu.2006.09.002
10.1038/001020a0
10.1063/1.4896538
10.1063/1.4940892
10.1103/physreva.11.658
10.1039/f19797500892
10.1007/BF02564872
10.1073/pnas.0603395103
10.1063/1.1676196
10.1103/physrevx.2.011011
10.1002/aic.15066
10.1103/physreve.49.359
10.1063/1.4954402
10.1063/1.459679
10.1098/rstl.1869.0021
10.1063/1.1486438
10.1007/978-3-642-72021-5_40
10.1016/0378-4371(77)90003-6
10.1016/j.supflu.2010.12.006
10.1007/bf00502113
10.1038/416811a
10.1063/1.3434530
10.1016/0031-8914(72)90276-5
10.1126/science.157.3787.375
10.1021/ie301751y
10.1103/physreva.36.4062
10.1016/0378-4371(90)90127-e
10.1016/0031-8914(66)90169-8
10.1063/1.555991
10.1063/1.2434960
10.1063/1.555798
10.1139/cjr40b-041
10.1063/1.555875
10.1021/j100031a034
10.1016/j.fluid.2004.07.012
10.1021/je5009526
10.1063/1.1924700
10.1016/j.jct.2015.04.015
10.1016/0031-8914(64)90211-3
10.1021/je0342419
10.1063/1.555898
10.1080/00107517108205263
10.1021/ie0300880
10.1007/bf01447093
10.1063/1.4953002
10.1007/s10765-016-2068-7
10.1021/ja02184a005
10.1063/1.3679169
ContentType Journal Article
Copyright 2017 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved.
Copyright_xml – notice: 2017 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved.
CorporateAuthor National Inst. of Standards and Technology (NIST), Boulder, CO (United States)
CorporateAuthor_xml – name: National Inst. of Standards and Technology (NIST), Boulder, CO (United States)
DBID AAYXX
CITATION
NPM
7X8
OIOZB
OTOTI
DOI 10.1063/1.4977429
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Sciences (General)
Physics
EISSN 1529-7845
ExternalDocumentID 1463125
28736460
10_1063_1_4977429
jpr
Genre Journal Article
GrantInformation_xml – fundername: Intramural NIST DOC
  grantid: 9999-NIST
GroupedDBID -~X
.DC
.GJ
0ZJ
2-P
29L
2WC
3O-
4.4
5GY
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABEFU
ABFTF
ABJNI
ABTAH
ACBRY
ACGFO
ACGFS
ACKIV
ACZLF
ADCTM
AEJMO
AENEX
AETEA
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AI.
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ASPBG
ATXIE
AVWKF
AWQPM
AZFZN
BPZLN
CS3
DU5
E3Z
EBS
EJD
FDOHQ
FFFMQ
G8K
HAM
HH5
J23
M71
M73
N9A
NEUPN
NPSNA
O-B
OK1
P2P
PQQKQ
RDFOP
RIP
RNS
ROL
RQS
T9H
TN5
UHB
UPT
UQL
VH1
VOH
WH7
YQT
ZE2
ZY4
~02
AAGWI
AAYXX
ABDPE
ABJGX
ADMLS
CITATION
NPM
7X8
OIOZB
OTOTI
ID FETCH-LOGICAL-c520t-61c320395c1a5a1b0a1dce6c868a69a98af0e279a39226e8926c4b4f0ac7a7ca3
ISSN 0047-2689
IngestDate Tue Nov 05 04:32:46 EST 2024
Sun Aug 24 03:30:20 EDT 2025
Sat May 31 02:11:08 EDT 2025
Thu Apr 24 22:58:42 EDT 2025
Tue Jul 01 00:22:14 EDT 2025
Fri Jun 21 00:14:45 EDT 2024
Sun Jul 14 10:20:33 EDT 2019
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords carbon dioxide
Rainwater-Friend theory
viscosity
data analysis
thermophysical properties
critical enhancement
thermodynamic scaling
Carbon dioxide
Language English
License 0047-2689/2017/46(1)/013107/28/$47.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c520t-61c320395c1a5a1b0a1dce6c868a69a98af0e279a39226e8926c4b4f0ac7a7ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
FE0003931
OpenAccessLink https://www.osti.gov/servlets/purl/1463125
PMID 28736460
PQID 1923111014
PQPubID 23479
PageCount 28
ParticipantIDs crossref_primary_10_1063_1_4977429
crossref_citationtrail_10_1063_1_4977429
proquest_miscellaneous_1923111014
scitation_primary_10_1063_1_4977429
osti_scitechconnect_1463125
pubmed_primary_28736460
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of physical and chemical reference data
PublicationTitleAlternate J Phys Chem Ref Data
PublicationYear 2017
Publisher American Institute of Physics (AIP)
Publisher_xml – name: American Institute of Physics (AIP)
References Vogel, Hendl (c92) 1992; 79
Maitland, Smith (c76) 1970; 67
Huber, Laesecke, Xiang (c99) 2004; 224
Huber, Laesecke, Perkins (c101) 2003; 42
Abramson (c39) 2009; 80
van der Gulik (c48) 1997; 238
Hendl, Neumann, Vogel (c55) 1993; 25
Graham (c6) 1846; 136
Chen, Abbaci, Tang, Sengers (c42) 1990; 42
Stephan, Krauss, Laesecke (c102) 1987; 16
Pensado, Pádua, Comuñas, Fernández (c52) 2008; 44
Kestin, Whitelaw (c59) 1963; 29
Hellmann (c77) 2013; 111
Andrews (c41) 1869; 159
Berg (c110) 2005; 16
Jiang, Moultos, Economou, Panagiotopoulos (c116) 2016; 120
Friend, Rainwater (c90) 1984; 107
Zhong, Lai, Wang, Qiu, Lüdemann, Chen (c115) 2015; 60
Kestin, Whitelaw, Zien (c124) 1964; 30
van den Berg, ten Seldam, van der Gulik (c64) 1993; 246
Bhattacharjee, Ferrell, Basu, Sengers (c127) 1981; 24
Harris, Yung (c119) 1995; 99
Span, Wagner (c21) 1996; 25
Luettmer-Strathmann, Sengers, Olchowy (c126) 1995; 103
von Obermayer (c78) 1876; 73
Batschinski (c93) 1913; 84
Hildebrand (c94) 1971; 174
Huber, Laesecke, Perkins (c100) 2004; 18
Kestin, Wakeham, Ro (c83) 1972; 58
Estrada-Alexanders, Hurly (c49) 2008; 40
Hellmann (c22) 2014; 613
van der Gulik, Mostert, van den Berg (c70) 1991; 23
Meier, Laesecke, Kabelac (c118) 2004; 121
Wobser, Müller (c86) 1941; 52
Lewis, Nocera (c1) 2006; 103
Ashurst, Hoover (c105) 1975; 11
Miller, Litynski, Brickett, Morreale (c3) 2016; 62
Naldrett, Maass (c123) 1940; 18B
Harris, Hope, Gough, Smith (c80) 1979; 75
Bukowski, Sadlej, Jeziorski, Jankowski, Szalewicz, Kucharski, Williams, Rice (c74) 1999; 110
van den Berg, ten Seldam, van der Gulik (c47) 1990; 167
Anderson, Lekkerkerker (c32) 2002; 416
Giordano, Datchi, Dewaele (c40) 2006; 125
Williamson (c44) 1869; 1
Bingham (c95) 1914; 36
Vesovic, Wakeham, Olchowy, Sengers, Watson, Millat (c12) 1990; 19
Timrot, Traktueva (c79) 1975; 22
Aimoli, Maginn, Abreu (c114) 2014; 141
Michels, Botzen, Schuurman (c63) 1957; 23
Huber, Laesecke (c98) 2006; 45
Altunin, Sakhabetdinov (c9) 1972; 19
Rainwater, Friend (c91) 1987; 36
Widom (c31) 1967; 157
Mal'tsev, Nerushev, Novopashin, Radchenko, Licht, Miller, Parekh (c50) 2004; 49
Palmer (c117) 1994; 49
Bock, Bich, Vogel, Dickinson, Vesovic (c75) 2002; 117
Mohr, Newell, Taylor (c89) 2016; 45
Huppert, Neufeld (c2) 2014; 46
Coriani, Halkier, Rizzo, Ruud (c30) 2000; 326
Fuentes-Herrera, Moreno-Razo, Guzmán, López-Lemus, Ibarra-Tandi (c35) 2016; 144
Haepp (c66) 1976; 9
Schäfer, Richter, Span (c57) 2015; 89
Heidaryan, Hatami, Rahimi, Moghadasi (c15) 2011; 56
Kurin, Golubev (c67) 1974; 21
Doolittle (c96) 1951; 22
Schröer, Becker (c122) 1935; 173
Davani, Falcone, Teodoriu, McCain (c53) 2012; 51
Hunter, Marsh, Matthews, Smith (c81) 1993; 14
Hoover, Gray, Johnson (c106) 1971; 55
Kestin, Khalifa, Ro, Wakeham (c88) 1977; 88A
Cencek, Przybytek, Komasa, Mehl, Jeziorski, Szalewicz (c28) 2012; 136
Pádua, Wakeham, Wilhelm (c71) 1994; 15
Vogel, Span, Herrmann (c68) 2015; 44
Merker, Engin, Vrabec, Hasse (c113) 2010; 132
Berg, Moldover (c26) 1990; 93
Laesecke, Bair (c103) 2011; 32
DiPippo, Kestin, Whitelaw (c69) 1966; 32
Liang, Tsai (c112) 2010; 108
Ingebrigtsen, Schrøder, Dyre (c107) 2012; 2
Iwasaki, Takahashi (c125) 1981; 74
Laesecke, Krauss, Stephan, Wagner (c97) 1990; 19
Setzmann, Wagner (c36) 1991; 20
Locke, Stanwix, Hughes, Kisselev, Goodwin, Marsh, May (c56) 2014; 59
Dyre (c108) 2013; 88
Nieto-Draghi, de Bruin, Perez-Pellitero, Avalos, Mackie (c111) 2007; 126
Sih, Dehghani, Foster (c51) 2007; 41
Mason, Wright (c45) 1971; 12
Vogel, Küchenmeister, Bich, Laesecke (c24) 1998; 27
Golubev, Petrov (c62) 1953; 2
van den Berg, ten Seldam, van der Gulik (c65) 1993; 14
Larsen, Zukoski (c34) 2012; 136
Ashurst, Hoover (c104) 1975; 21
Vogel (c23) 2016; 37
Zhang, Duan (c120) 2005; 122
Johnston, McCloskey (c82) 1940; 44
Bücker, Wagner (c37) 2006; 35
Kundt, Warburg (c46) 1875; 155
Fenghour, Wakeham, Vesovic (c14) 1998; 27
Schmidt, Lipson (c84) 2009; 324
Vogel, Barkow (c54) 1986; 267
Kennedy, Thodos (c7) 1961; 7
Huber, Sykioti, Assael, Perkins (c128) 2016; 45
Kestin, Ro, Wakeham (c87) 1972; 56
Mulero A. (c33/c33_1) 2008
c49/c49_1
c85/c85_1
Maxwell J. C. (c5/c5_1) 1872
c92/c92_1
Vargaftik N. B. (c13/c13_1) 1996
c56/c56_1
c110/c110_1
c27/c27_1
c114/c114_1
c70/c70_1
c118/c118_1
Schröer E. (c122/c122_1) 1935; 173
c84/c84_1
c2/c2_1
c57/c57_1
c41/c41_1
c12/c12_1
c121/c121_1
c91/c91_1
c120/c120_1
c79/c79_1
c63/c63_1
c28/c28_1
c124/c124_1
c125/c125_1
c34/c34_1
c129/c129_1
c40/c40_1
c128/c128_1
c94/c94_1
Span R. (c38/c38_1) 1993
c47/c47_1
c7/c7_1
c83/c83_1
Bird R. B. (c4/c4_1) 2001
c36/c36_1
Touloukian Y. S. (c10/c10_1) 1975
c35/c35_1
c69/c69_1
c24/c24_1
c50/c50_1
c48/c48_1
Golubev I. F. (c62/c62_1) 1953; 2
Moldover M. (c58/c58_1) 2015
c93/c93_1
c95/c95_1
c59/c59_1
Wobser R. (c86/c86_1) 1941; 52
c101/c101_1
c82/c82_1
c103/c103_1
c26/c26_1
c105/c105_1
c107/c107_1
c6/c6_1
c71/c71_1
c25/c25_1
Wohlfarth C. (c20/c20_1) 2009
c37/c37_1
c14/c14_1
Cohen E. R. (c29/c29_1) 2008
c51/c51_1
c15/c15_1
Kurin V. I. (c67/c67_1) 1974; 21
c22/c22_1
c96/c96_1
c81/c81_1
c112/c112_1
Maitland G. C. (c76/c76_1) 1970; 67
c89/c89_1
c73/c73_1
c116/c116_1
Altunin V. V. (c9/c9_1) 1972; 19
c44/c44_1
Stephan K. (c11/c11_1) 1979
c39/c39_1
c23/c23_1
c75/c75_1
c46/c46_1
Wohlfarth C. (c19/c19_1) 2001
c52/c52_1
c3/c3_1
c45/c45_1
c97/c97_1
c123/c123_1
c126/c126_1
c80/c80_1
c127/c127_1
Hendl S. (c55/c55_1) 1993; 25
c68/c68_1
c74/c74_1
c31/c31_1
c65/c65_1
c1/c1_1
Docter A. (c60/c60_1) 1997
c42/c42_1
c90/c90_1
c111/c111_1
c113/c113_1
Chapman S. (c109/c109_1) 1970
Wohlfarth C. (c18/c18_1) 2001
c115/c115_1
c117/c117_1
c53/c53_1
c87/c87_1
c119/c119_1
von Obermayer A. (c78/c78_1) 1876; 73
c30/c30_1
c64/c64_1
c98/c98_1
c21/c21_1
c77/c77_1
c100/c100_1
c102/c102_1
Golubev I. F. (c8/c8_1) 1970
c32/c32_1
c66/c66_1
c104/c104_1
c106/c106_1
c108/c108_1
c99/c99_1
c54/c54_1
c88/c88_1
References_xml – volume: 42
  start-page: 3163
  year: 2003
  ident: c101
  publication-title: Ind. Eng. Chem. Res.
– volume: 24
  start-page: 1469
  year: 1981
  ident: c127
  publication-title: Phys. Rev. A
– volume: 122
  start-page: 214507
  year: 2005
  ident: c120
  publication-title: J. Chem. Phys.
– volume: 167
  start-page: 457
  year: 1990
  ident: c47
  publication-title: Physica A
– volume: 49
  start-page: 684
  year: 2004
  ident: c50
  publication-title: J. Chem. Eng. Data
– volume: 30
  start-page: 161
  year: 1964
  ident: c124
  publication-title: Physica
– volume: 44
  start-page: 1038
  year: 1940
  ident: c82
  publication-title: J. Phys. Chem.
– volume: 58
  start-page: 165
  year: 1972
  ident: c83
  publication-title: Physica
– volume: 16
  start-page: 11
  year: 2005
  ident: c110
  publication-title: Metrologia
– volume: 59
  start-page: 1619
  year: 2014
  ident: c56
  publication-title: J. Chem. Eng. Data
– volume: 18
  start-page: 968
  year: 2004
  ident: c100
  publication-title: Energy Fuels
– volume: 51
  start-page: 15276
  year: 2012
  ident: c53
  publication-title: Ind. Eng. Chem. Res.
– volume: 41
  start-page: 148
  year: 2007
  ident: c51
  publication-title: J. Supercrit. Fluids
– volume: 56
  start-page: 4114
  year: 1972
  ident: c87
  publication-title: J. Chem. Phys.
– volume: 49
  start-page: 359
  year: 1994
  ident: c117
  publication-title: Phys. Rev. E
– volume: 613
  start-page: 133
  year: 2014
  ident: c22
  publication-title: Chem. Phys. Lett.
– volume: 103
  start-page: 15729
  year: 2006
  ident: c1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 74
  start-page: 1930
  year: 1981
  ident: c125
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 625
  year: 1961
  ident: c7
  publication-title: AIChE J.
– volume: 14
  start-page: 819
  year: 1993
  ident: c81
  publication-title: Int. J. Thermophys.
– volume: 19
  start-page: 124
  year: 1972
  ident: c9
  publication-title: Therm. Eng.
– volume: 40
  start-page: 193
  year: 2008
  ident: c49
  publication-title: J. Chem. Thermodyn.
– volume: 155
  start-page: 525
  year: 1875
  ident: c46
  publication-title: Pogg. Ann.
– volume: 73
  start-page: 433
  year: 1876
  ident: c78
  publication-title: Wien. Ber.
– volume: 120
  start-page: 984
  year: 2016
  ident: c116
  publication-title: J. Phys. Chem. B
– volume: 416
  start-page: 811
  year: 2002
  ident: c32
  publication-title: Nature
– volume: 80
  start-page: 021201
  year: 2009
  ident: c39
  publication-title: Phys. Rev. E
– volume: 14
  start-page: 865
  year: 1993
  ident: c65
  publication-title: Int. J. Thermophys.
– volume: 173
  start-page: 178
  year: 1935
  ident: c122
  publication-title: Z. Phys. Chem. A
– volume: 19
  start-page: 763
  year: 1990
  ident: c12
  publication-title: J. Phys. Chem. Ref. Data
– volume: 99
  start-page: 12021
  year: 1995
  ident: c119
  publication-title: J. Phys. Chem.
– volume: 22
  start-page: 105
  year: 1975
  ident: c79
  publication-title: Therm. Eng.
– volume: 42
  start-page: 4470
  year: 1990
  ident: c42
  publication-title: Phys. Rev. A
– volume: 21
  start-page: 410
  year: 1975
  ident: c104
  publication-title: AIChE J.
– volume: 56
  start-page: 144
  year: 2011
  ident: c15
  publication-title: J. Supercrit. Fluids
– volume: 157
  start-page: 375
  year: 1967
  ident: c31
  publication-title: Science
– volume: 126
  start-page: 064509
  year: 2007
  ident: c111
  publication-title: J. Chem. Phys.
– volume: 11
  start-page: 658
  year: 1975
  ident: c105
  publication-title: Phys. Rev. A
– volume: 88
  start-page: 042139
  year: 2013
  ident: c108
  publication-title: Phys. Rev. E
– volume: 1
  start-page: 20
  year: 1869
  ident: c44
  publication-title: Nature
– volume: 67
  start-page: 631
  year: 1970
  ident: c76
  publication-title: J. Chim. Phys. Phys.-Chim. Biol.
– volume: 103
  start-page: 7482
  year: 1995
  ident: c126
  publication-title: J. Chem. Phys.
– volume: 12
  start-page: 179
  year: 1971
  ident: c45
  publication-title: Contemp. Phys.
– volume: 174
  start-page: 490
  year: 1971
  ident: c94
  publication-title: Science
– volume: 55
  start-page: 1128
  year: 1971
  ident: c106
  publication-title: J. Chem. Phys.
– volume: 89
  start-page: 7
  year: 2015
  ident: c57
  publication-title: J. Chem. Thermodyn.
– volume: 144
  start-page: 214502
  year: 2016
  ident: c35
  publication-title: J. Chem. Phys.
– volume: 326
  start-page: 269
  year: 2000
  ident: c30
  publication-title: Chem. Phys. Lett.
– volume: 29
  start-page: 335
  year: 1963
  ident: c59
  publication-title: Physica
– volume: 136
  start-page: 054901
  year: 2012
  ident: c34
  publication-title: J. Chem. Phys.
– volume: 23
  start-page: 87
  year: 1991
  ident: c70
  publication-title: High Temp. - High Pressures
– volume: 2
  start-page: 011011
  year: 2012
  ident: c107
  publication-title: Phys. Rev. X
– volume: 45
  start-page: 043102
  year: 2016
  ident: c89
  publication-title: J. Phys. Chem. Ref. Data
– volume: 88A
  start-page: 242
  year: 1977
  ident: c88
  publication-title: Physica A
– volume: 238
  start-page: 81
  year: 1997
  ident: c48
  publication-title: Physica A
– volume: 25
  start-page: 503
  year: 1993
  ident: c55
  publication-title: High Temp. - High Pressures
– volume: 246
  start-page: 1
  year: 1993
  ident: c64
  publication-title: J. Fluid Mech.
– volume: 141
  start-page: 134101
  year: 2014
  ident: c114
  publication-title: J. Chem. Phys.
– volume: 25
  start-page: 1509
  year: 1996
  ident: c21
  publication-title: J. Phys. Chem. Ref. Data
– volume: 36
  start-page: 1393
  year: 1914
  ident: c95
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 281
  year: 1976
  ident: c66
  publication-title: Warme Stoffubertragung
– volume: 22
  start-page: 1471
  year: 1951
  ident: c96
  publication-title: J. Appl. Phys.
– volume: 93
  start-page: 1926
  year: 1990
  ident: c26
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 5
  year: 1953
  ident: c62
  publication-title: Trudy GIAP
– volume: 19
  start-page: 1089
  year: 1990
  ident: c97
  publication-title: J. Phys. Chem. Ref. Data
– volume: 132
  start-page: 234512
  year: 2010
  ident: c113
  publication-title: J. Chem. Phys.
– volume: 32
  start-page: 925
  year: 2011
  ident: c103
  publication-title: Int. J. Thermophys.
– volume: 46
  start-page: 255
  year: 2014
  ident: c2
  publication-title: Annu. Rev. Fluid Mech.
– volume: 52
  start-page: 165
  year: 1941
  ident: c86
  publication-title: Kolloid-Beih.
– volume: 75
  start-page: 892
  year: 1979
  ident: c80
  publication-title: J. Chem. Soc., Faraday Trans. 1
– volume: 125
  start-page: 054504
  year: 2006
  ident: c40
  publication-title: J. Chem. Phys.
– volume: 159
  start-page: 575
  year: 1869
  ident: c41
  publication-title: Philos. Trans. R. Soc. London
– volume: 44
  start-page: 172
  year: 2008
  ident: c52
  publication-title: J. Supercrit. Fluids
– volume: 136
  start-page: 224303
  year: 2012
  ident: c28
  publication-title: J. Chem. Phys.
– volume: 16
  start-page: 993
  year: 1987
  ident: c102
  publication-title: J. Phys. Chem. Ref. Data
– volume: 324
  start-page: 81
  year: 2009
  ident: c84
  publication-title: Science
– volume: 111
  start-page: 387
  year: 2013
  ident: c77
  publication-title: Mol. Phys.
– volume: 110
  start-page: 3785
  year: 1999
  ident: c74
  publication-title: J. Chem. Phys.
– volume: 36
  start-page: 4062
  year: 1987
  ident: c91
  publication-title: Phys. Rev. A
– volume: 60
  start-page: 2188
  year: 2015
  ident: c115
  publication-title: J. Chem. Eng. Data
– volume: 20
  start-page: 1061
  year: 1991
  ident: c36
  publication-title: J. Phys. Chem. Ref. Data
– volume: 44
  start-page: 043101
  year: 2015
  ident: c68
  publication-title: J. Phys. Chem. Ref. Data
– volume: 37
  start-page: 63
  year: 2016
  ident: c23
  publication-title: Int. J. Thermophys.
– volume: 27
  start-page: 947
  year: 1998
  ident: c24
  publication-title: J. Phys. Chem. Ref. Data
– volume: 18B
  start-page: 322
  year: 1940
  ident: c123
  publication-title: Can. J. Res.
– volume: 35
  start-page: 205
  year: 2006
  ident: c37
  publication-title: J. Phys. Chem. Ref. Data
– volume: 32
  start-page: 2064
  year: 1966
  ident: c69
  publication-title: Physica
– volume: 45
  start-page: 013102
  year: 2016
  ident: c128
  publication-title: J. Phys. Chem. Ref. Data
– volume: 79
  start-page: 313
  year: 1992
  ident: c92
  publication-title: Fluid Phase Equilib.
– volume: 121
  start-page: 3671
  year: 2004
  ident: c118
  publication-title: J. Chem. Phys.
– volume: 62
  start-page: 2
  year: 2016
  ident: c3
  publication-title: AIChE J.
– volume: 117
  start-page: 2151
  year: 2002
  ident: c75
  publication-title: J. Chem. Phys.
– volume: 107
  start-page: 590
  year: 1984
  ident: c90
  publication-title: Chem. Phys. Lett.
– volume: 15
  start-page: 767
  year: 1994
  ident: c71
  publication-title: Int. J. Thermophys.
– volume: 21
  start-page: 125
  year: 1974
  ident: c67
  publication-title: Therm. Eng.
– volume: 27
  start-page: 31
  year: 1998
  ident: c14
  publication-title: J. Phys. Chem. Ref. Data
– volume: 23
  start-page: 95
  year: 1957
  ident: c63
  publication-title: Physica
– volume: 224
  start-page: 263
  year: 2004
  ident: c99
  publication-title: Fluid Phase Equilib.
– volume: 136
  start-page: 573
  year: 1846
  ident: c6
  publication-title: Philos. Trans. R. Soc. London
– volume: 84
  start-page: 643
  year: 1913
  ident: c93
  publication-title: Z. Phys. Chem.
– volume: 267
  start-page: 1038
  year: 1986
  ident: c54
  publication-title: Z. Phys. Chem.
– volume: 108
  start-page: 1285
  year: 2010
  ident: c112
  publication-title: Mol. Phys.
– volume: 45
  start-page: 4447
  year: 2006
  ident: c98
  publication-title: Ind. Eng. Chem. Res.
– volume-title: IUPAC Green Book on Quantities, Units and Symbols in Physical Chemistry
  year: 2008
  ident: c29/c29_1
– ident: c66/c66_1
  doi: 10.1007/bf01003580
– volume: 67
  start-page: 631
  year: 1970
  ident: c76/c76_1
  publication-title: J. Chim. Phys. Phys.-Chim. Biol.
  doi: 10.1051/jcp/1970670631
– ident: c92/c92_1
  doi: 10.1016/0378-3812(92)85140-4
– ident: c100/c100_1
  doi: 10.1021/ef034109e
– volume-title: Handbook of Physical Properties of Liquids and Gases
  year: 1996
  ident: c13/c13_1
  doi: 10.1615/978-1-56700-063-4.0
– ident: c81/c81_1
  doi: 10.1007/bf00502110
– ident: c94/c94_1
  doi: 10.1126/science.174.4008.490
– ident: c25/c25_1
– ident: c97/c97_1
  doi: 10.1063/1.555863
– ident: c93/c93_1
  doi: 10.1515/zpch-1913-0142
– volume-title: Eine neue Fundamentalgleichung für das Fluide Zustandsgebiet von Kohlendioxid bei Temperaturen bis zu 1100 K und Drücken bis zu 800 MPa
  year: 1993
  ident: c38/c38_1
– ident: c63/c63_1
  doi: 10.1016/s0031-8914(57)90708-5
– ident: c103/c103_1
  doi: 10.1007/s10765-011-0978-y
– ident: c118/c118_1
  doi: 10.1063/1.1770695
– ident: c70/c70_1
  doi: 10.1016/0378-3812(92)85139-y
– ident: c87/c87_1
  doi: 10.1063/1.1677823
– volume: 173
  start-page: 178
  year: 1935
  ident: c122/c122_1
  publication-title: Z. Phys. Chem. A
  doi: 10.1515/zpch-1935-17321
– volume: 19
  start-page: 124
  year: 1972
  ident: c9/c9_1
  publication-title: Therm. Eng.
– ident: c14/c14_1
  doi: 10.1063/1.556013
– ident: c110/c110_1
  doi: 10.1088/0026-1394/42/1/002
– ident: c39/c39_1
  doi: 10.1103/physreve.80.021201
– ident: c54/c54_1
  doi: 10.1515/zpch-1986-01135
– ident: c42/c42_1
  doi: 10.1103/physreva.42.4470
– ident: c37/c37_1
  doi: 10.1063/1.1859286
– ident: c79/c79_1
  doi: 10.1016/b978-0-08-027284-9.50043-7
– ident: c2/c2_1
  doi: 10.1146/annurev-fluid-011212-140627
– ident: c64/c64_1
  doi: 10.1017/s0022112093000011
– ident: c127/c127_1
  doi: 10.1103/physreva.24.1469
– ident: c40/c40_1
  doi: 10.1063/1.2215609
– ident: c52/c52_1
  doi: 10.1016/j.supflu.2007.10.004
– ident: c6/c6_1
  doi: 10.1098/rstl.1846.0029
– ident: c104/c104_1
  doi: 10.1002/aic.690210233
– ident: c28/c28_1
  doi: 10.1063/1.4712218
– volume-title: 19th Symposium on Thermophysical Properties
  year: 2015
  ident: c58/c58_1
– ident: c84/c84_1
  doi: 10.1126/science.1165893
– ident: c108/c108_1
  doi: 10.1103/physreve.88.042139
– volume-title: Viscosity
  year: 1975
  ident: c10/c10_1
  doi: 10.1007/978-1-4757-1628-3
– ident: c85/c85_1
  doi: 10.1007/978-1-4419-1626-6_5
– ident: c82/c82_1
  doi: 10.1021/j150405a004
– ident: c56/c56_1
  doi: 10.1021/je500083n
– ident: c24/c24_1
  doi: 10.1063/1.556025
– ident: c112/c112_1
  doi: 10.1080/00268971003670873
– volume-title: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology
  year: 2001
  ident: c18/c18_1
– ident: c59/c59_1
  doi: 10.1016/s0031-8914(63)80294-3
– ident: c48/c48_1
  doi: 10.1016/s0378-4371(96)00466-9
– volume: 21
  start-page: 125
  year: 1974
  ident: c67/c67_1
  publication-title: Therm. Eng.
– ident: c46/c46_1
  doi: 10.1002/andp.18752310803
– ident: c77/c77_1
  doi: 10.1080/00268976.2012.726379
– volume: 25
  start-page: 503
  year: 1993
  ident: c55/c55_1
  publication-title: High Temp. - High Pressures
– volume-title: Viscosity of Dense Fluids
  year: 1979
  ident: c11/c11_1
  doi: 10.1007/978-1-4757-6931-9
– ident: c96/c96_1
  doi: 10.1063/1.1699894
– ident: c116/c116_1
  doi: 10.1021/acs.jpcb.5b11701
– ident: c49/c49_1
  doi: 10.1016/j.jct.2007.07.002
– ident: c98/c98_1
  doi: 10.1021/ie060560s
– ident: c68/c68_1
  doi: 10.1063/1.4930838
– ident: c125/c125_1
  doi: 10.1063/1.441286
– ident: c74/c74_1
  doi: 10.1063/1.479108
– ident: c30/c30_1
  doi: 10.1016/s0009-2614(00)00793-4
– ident: c90/c90_1
  doi: 10.1016/s0009-2614(84)85163-5
– ident: c126/c126_1
  doi: 10.1103/physrevb.52.6285
– ident: c7/c7_1
  doi: 10.1002/aic.690070419
– ident: c51/c51_1
  doi: 10.1016/j.supflu.2006.09.002
– ident: c44/c44_1
  doi: 10.1038/001020a0
– volume-title: Lecture Notes in Physics
  year: 2008
  ident: c33/c33_1
– ident: c114/c114_1
  doi: 10.1063/1.4896538
– ident: c128/c128_1
  doi: 10.1063/1.4940892
– ident: c105/c105_1
  doi: 10.1103/physreva.11.658
– ident: c80/c80_1
  doi: 10.1039/f19797500892
– volume: 52
  start-page: 165
  year: 1941
  ident: c86/c86_1
  publication-title: Kolloid-Beih.
  doi: 10.1007/BF02564872
– ident: c1/c1_1
  doi: 10.1073/pnas.0603395103
– ident: c106/c106_1
  doi: 10.1063/1.1676196
– ident: c107/c107_1
  doi: 10.1103/physrevx.2.011011
– ident: c3/c3_1
  doi: 10.1002/aic.15066
– ident: c117/c117_1
  doi: 10.1103/physreve.49.359
– ident: c89/c89_1
  doi: 10.1063/1.4954402
– ident: c26/c26_1
  doi: 10.1063/1.459679
– ident: c73/c73_1
– ident: c41/c41_1
  doi: 10.1098/rstl.1869.0021
– ident: c75/c75_1
  doi: 10.1063/1.1486438
– volume-title: Theory of Heat
  year: 1872
  ident: c5/c5_1
– ident: c22/c22_1
  doi: 10.1007/978-3-642-72021-5_40
– ident: c27/c27_1
– ident: c88/c88_1
  doi: 10.1016/0378-4371(77)90003-6
– ident: c15/c15_1
  doi: 10.1016/j.supflu.2010.12.006
– ident: c65/c65_1
  doi: 10.1007/bf00502113
– volume-title: Transport Phenomena
  year: 2001
  ident: c4/c4_1
– volume-title: Viscosity of Gases and Gas Mixtures. A Handbook
  year: 1970
  ident: c8/c8_1
– ident: c32/c32_1
  doi: 10.1038/416811a
– ident: c113/c113_1
  doi: 10.1063/1.3434530
– volume-title: The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases
  year: 1970
  ident: c109/c109_1
– volume-title: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology
  year: 2001
  ident: c19/c19_1
– ident: c83/c83_1
  doi: 10.1016/0031-8914(72)90276-5
– ident: c31/c31_1
  doi: 10.1126/science.157.3787.375
– volume-title: Entwicklung und Aufbau einer Anlage zur Simultanen Messung der Viskosität und der Dichte Fluider Stoffe
  year: 1997
  ident: c60/c60_1
– ident: c53/c53_1
  doi: 10.1021/ie301751y
– ident: c91/c91_1
  doi: 10.1103/physreva.36.4062
– ident: c129/c129_1
– ident: c47/c47_1
  doi: 10.1016/0378-4371(90)90127-e
– volume-title: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology
  year: 2009
  ident: c20/c20_1
– ident: c69/c69_1
  doi: 10.1016/0031-8914(66)90169-8
– ident: c21/c21_1
  doi: 10.1063/1.555991
– ident: c111/c111_1
  doi: 10.1063/1.2434960
– volume: 2
  start-page: 5
  year: 1953
  ident: c62/c62_1
  publication-title: Trudy GIAP
– ident: c121/c121_1
– ident: c102/c102_1
  doi: 10.1063/1.555798
– ident: c123/c123_1
  doi: 10.1139/cjr40b-041
– ident: c12/c12_1
  doi: 10.1063/1.555875
– ident: c119/c119_1
  doi: 10.1021/j100031a034
– ident: c99/c99_1
  doi: 10.1016/j.fluid.2004.07.012
– ident: c115/c115_1
  doi: 10.1021/je5009526
– ident: c120/c120_1
  doi: 10.1063/1.1924700
– ident: c57/c57_1
  doi: 10.1016/j.jct.2015.04.015
– ident: c124/c124_1
  doi: 10.1016/0031-8914(64)90211-3
– ident: c50/c50_1
  doi: 10.1021/je0342419
– ident: c36/c36_1
  doi: 10.1063/1.555898
– ident: c45/c45_1
  doi: 10.1080/00107517108205263
– ident: c101/c101_1
  doi: 10.1021/ie0300880
– ident: c71/c71_1
  doi: 10.1007/bf01447093
– ident: c35/c35_1
  doi: 10.1063/1.4953002
– volume: 73
  start-page: 433
  year: 1876
  ident: c78/c78_1
  publication-title: Wien. Ber.
– ident: c23/c23_1
  doi: 10.1007/s10765-016-2068-7
– ident: c95/c95_1
  doi: 10.1021/ja02184a005
– ident: c34/c34_1
  doi: 10.1063/1.3679169
SSID ssj0007882
Score 2.5058308
Snippet A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was...
A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO ) was compiled and a new reference correlation was...
A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was...
SourceID osti
proquest
pubmed
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13107
SubjectTerms INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Title Reference Correlation for the Viscosity of Carbon Dioxide
URI http://dx.doi.org/10.1063/1.4977429
https://www.ncbi.nlm.nih.gov/pubmed/28736460
https://www.proquest.com/docview/1923111014
https://www.osti.gov/servlets/purl/1463125
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb5RAEJ7oNab2wdjTKlbN-uOhpuGEZVng8XKnaYz6Ymv6RpZliZc0cDmoqf3rnYVlubMXU30hhFvg2G-Y_XaZ-QbgrZcrpXyRu5JHuctCX7kxDrtuoavCelz5QdEGyH7lJ2fs03l4PlTpa7NLmmwir7fmlfwPqngMcdVZsv-ArL0oHsB9xBe3iDBub4XxoBI700U2LjYDB78valkNOVirDH-bL6qrRb4Z_jNQ0mUPWpvs1ksJ2EokxyaRzSg1qlrJLrRnuiqrAbnr8peVLTieT9bXFXCssoFVva_UGg68K_AzUcY90sSN4k4AsvefZglx3U46Z-gHpqLtDTeNvEivGEyYZp9mxWNDCvuPIcoGDrafzHmQ-qk59S7sUJwg0BHsTOdfPn-zozBO7TulePMUvaoUD97b-25wkVGFPnXbPGMPdpGNdIERa9zj9CE8MAiRaWcB-3BHlWPYnfW1-sZwrw3klfUY9o2zrsmRURR_9wgSayhkzVAIGgpBQyHWUEhVkM5QiDGUx3D28cPp7MQ1NTNcGVKvcbkvA-oFSSh9EQo_84SfS8VlzGPBE5HEovAUjRKBvJhyFSeUS5axwhMyEpEUwQGMyqpUT4FwEeF4IJkqWMwEy0SCfIridfEMJObCgaO-99K-f3Rdk4v0BkoOvLZNl52KyrZGhxqCVHe2kj-kDvSSjZ6bBsjCHXjVI5Ni5-rPWqJU1WWdtnMUX9ecduBJB5m9CY2jgDPuOfDGYvi3f7Cl1c9qNbRIl3nx7DYPcwj3h5fqOYya1aV6gfS1yV4aS_0NzM2V0A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reference+Correlation+for+the+Viscosity+of+Carbon+Dioxide&rft.jtitle=Journal+of+physical+and+chemical+reference+data&rft.au=Laesecke%2C+Arno&rft.au=Muzny%2C+Chris+D.&rft.date=2017-03-01&rft.issn=0047-2689&rft.eissn=1529-7845&rft.volume=46&rft.issue=1&rft.spage=13107&rft_id=info:doi/10.1063%2F1.4977429&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4977429
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0047-2689&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0047-2689&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0047-2689&client=summon