Assessing the coastal hazard of Medicane Ianos through ensemble modelling
On 18 September 2020, Medicane Ianos hit the western coast of Greece, resulting in flooding and severe damage at several coastal locations. In this work, we aim at evaluating its impact on sea conditions and the associated uncertainty through the use of an ensemble of numerical simulations. We appli...
Saved in:
Published in | Natural hazards and earth system sciences Vol. 23; no. 6; pp. 2273 - 2287 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
22.06.2023
Copernicus Publ. / European Geosciences Union Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | On 18 September 2020, Medicane Ianos hit the western coast of Greece,
resulting in flooding and severe damage at several coastal locations.
In this work, we aim at evaluating its impact on sea conditions and the
associated uncertainty through the use of an ensemble of numerical
simulations. We applied a coupled wave–current model to an unstructured
mesh, representing the whole Mediterranean Sea, with a grid resolution
increasing in the Ionian Sea along the cyclone path and the landfall
area. To investigate the uncertainty in modelling sea levels and waves
for such an intense event, we performed an ensemble of ocean
simulations using several coarse (10 km) and high-resolution (2 km)
meteorological forcings from different mesoscale models. The performance of the ocean and wave models was evaluated against observations retrieved from fixed monitoring stations and satellites. All model runs emphasized the occurrence of severe sea conditions along the cyclone path and at the coast. Due to the rugged and complex coastline, extreme sea levels are localized at specific coastal sites. However, numerical results show a large spread of the simulated sea conditions for both the sea level and waves, highlighting the large uncertainty in simulating this kind of extreme event. The multi-model and multi-physics approach allows us to assess how the uncertainty propagates from meteorological to ocean variables and the subsequent coastal impact. The ensemble mean and standard deviation were combined to prove the hazard scenarios of the potential impact of such an
extreme event to be used in a flood risk management plan. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1684-9981 1561-8633 1684-9981 |
DOI: | 10.5194/nhess-23-2273-2023 |