Mutations altering the gammaretrovirus endoproteolytic motif affect glycosylation of the envelope glycoprotein and early events of the virus life cycle

Abstract Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelo...

Full description

Saved in:
Bibliographic Details
Published inVirology (New York, N.Y.) Vol. 475; pp. 110 - 119
Main Authors Argaw, Takele, Wilson, Carolyn A
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Previously, we found that mutation of glutamine to proline in the endoproteolytic cleavage signal of the PERV-C envelope (RQKK to RPKK) resulted in non-infectious vectors. Here, we show that RPKK results in a non-infectious vector when placed in not only a PERV envelope, but also the envelope of a related gammaretrovirus, FeLV-B. The amino acid substitutions do not prevent envelope precursor cleavage, viral core and genome assembly, or receptor binding. Rather, the mutations result in the formation of hyperglycosylated glycoprotein and a reduction in the reverse transcribed minus strand synthesis and undetectable 2-LTR circular DNA in cells exposed to vectors with these mutated envelopes. Our findings suggest novel functions associated with the cleavage signal sequence that may affect trafficking through the glycosylation machinery of the cell. Further, the glycosylation status of the envelope appears to impact post-binding events of the viral life cycle, either membrane fusion, internalization, or reverse transcription.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0042-6822
1096-0341
DOI:10.1016/j.virol.2014.11.010