Closed-form boundary State feedbacks for a class of 1-D partial integro-differential equations

In this paper, a problem of boundary stabilization of a class of linear parabolic partial integro-differential equations (P(I)DEs) in one dimension is considered using the method of backstepping, avoiding spatial discretization required in previous efforts. The problem is formulated as a design of a...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 49; no. 12; pp. 2185 - 2202
Main Authors Smyshlyaev, A., Krstic, M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2004
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this paper, a problem of boundary stabilization of a class of linear parabolic partial integro-differential equations (P(I)DEs) in one dimension is considered using the method of backstepping, avoiding spatial discretization required in previous efforts. The problem is formulated as a design of an integral operator whose kernel is required to satisfy a hyperbolic P(I)DE. The kernel P(I)DE is then converted into an equivalent integral equation and by applying the method of successive approximations, the equation's well posedness and the kernel's smoothness are established. It is shown how to extend this approach to design optimally stabilizing controllers. An adaptation mechanism is developed to reduce the conservativeness of the inverse optimal controller, and the performance bounds are derived. For a broad range of physically motivated special cases feedback laws are constructed explicitly and the closed-loop solutions are found in closed form. A numerical scheme for the kernel P(I)DE is proposed; its numerical effort compares favorably with that associated with operator Riccati equations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0018-9286
1558-2523
DOI:10.1109/TAC.2004.838495