Polymorphism in Glutathione S-Transferase P1 is Associated with Susceptibility to Chemotherapy-Induced Leukemia

Glutathione S-transferases (GSTs) detoxify potentially mutagenic and toxic DNA-reactive electrophiles, including metabolites of several chemotherapeutic agents, some of which are suspected human carcinogens. Functional polymorphisms exist in at least three genes that encode GSTs, including GSTM1, GS...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 98; no. 20; pp. 11592 - 11597
Main Authors Allan, James M., Wild, Christopher P., Rollinson, Sara, Willett, Eleanor V., Moorman, Anthony V., Dovey, Gareth J., Roddam, Philippa L., Roman, Eve, Cartwright, Raymond A., Morgan, Gareth J.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 25.09.2001
National Acad Sciences
The National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Glutathione S-transferases (GSTs) detoxify potentially mutagenic and toxic DNA-reactive electrophiles, including metabolites of several chemotherapeutic agents, some of which are suspected human carcinogens. Functional polymorphisms exist in at least three genes that encode GSTs, including GSTM1, GSTT1, and GSTP1. We hypothesize, therefore, that polymorphisms in genes that encode GSTs alter susceptibility to chemotherapy-induced carcinogenesis, specifically to therapy-related acute myeloid leukemia (t-AML), a devastating complication of long-term cancer survival. Elucidation of genetic determinants may help to identify individuals at increased risk of developing t-AML. To this end, we have examined 89 cases of t-AML, 420 cases of de novo AML, and 1,022 controls for polymorphisms in GSTM1, GSTT1, and GSTP1. Gene deletion of GSTM1 or GSTT1 was not specifically associated with susceptibility to t-AML. Individuals with at least one GSTP1 codon 105 Val allele were significantly over-represented in t-AML cases compared with de novo AML cases [odds ratio (OR), 1.81; 95% confidence interval (CI), 1.11-2.94]. Moreover, relative to de novo AML, the GSTP1 codon 105 Val allele occurred more often among t-AML patients with prior exposure to chemotherapy (OR, 2.66; 95% Cl, 1.39-5.09), particularly among those with prior exposure to known GSTP1 substrates (OR, 4.34; 95% CI, 1.43-13.20), and not among those t-AML patients with prior exposure to radiotherapy alone (OR, 1.01; 95% CI, 0.50-2.07). These data suggest that inheritance of at least one Val allele at GSTP1 codon 105 confers a significantly increased risk of developing t-AML after cytotoxic chemotherapy, but not after radiotherapy.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
Edited by Allan H. Conney, Rutgers, State University of New Jersey New Brunswick, Piscataway, NJ, and approved July 17, 2001
To whom reprint requests should be addressed. E-mail: j.m.allan@leeds.ac.uk.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.191211198