An operational approach to National Institute on Aging-Alzheimer's Association criteria for preclinical Alzheimer disease

Objective: A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines. Methods: We employed Pittsburgh compound B po...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 71; no. 6; pp. 765 - 775
Main Authors Jack Jr, Clifford R., Knopman, David S., Weigand, Stephen D., Wiste, Heather J., Vemuri, Prashanthi, Lowe, Val, Kantarci, Kejal, Gunter, Jeffrey L., Senjem, Matthew L., Ivnik, Robert J., Roberts, Rosebud O., Rocca, Walter A., Boeve, Bradley F., Petersen, Ronald C.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2012
Wiley-Liss
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Objective: A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines. Methods: We employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis, and 18fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cutpoints. A group of 450 cognitively normal (CN) subjects from a population‐based sample was used to develop cognitive cutpoints and to assess population frequencies of the different preclinical AD stages using different cutpoint criteria. Results: The new criteria subdivide the preclinical phase of AD into stages 1 to 3. To classify our CN subjects, 2 additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected non‐AD pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cutpoints corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0, 16% stage 1, 12 % stage 2, 3% stage 3, and 23% SNAP. Interpretation: This cross‐sectional evaluation of the NIA‐AA criteria for preclinical AD indicates that the 1–3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population‐based sample, leaving only 3% unclassified. Future longitudinal validation of the criteria will be important ANN NEUROL 2012;
AbstractList A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines.OBJECTIVEA workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines.We employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis, and (18) fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cutpoints. A group of 450 cognitively normal (CN) subjects from a population-based sample was used to develop cognitive cutpoints and to assess population frequencies of the different preclinical AD stages using different cutpoint criteria.METHODSWe employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis, and (18) fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cutpoints. A group of 450 cognitively normal (CN) subjects from a population-based sample was used to develop cognitive cutpoints and to assess population frequencies of the different preclinical AD stages using different cutpoint criteria.The new criteria subdivide the preclinical phase of AD into stages 1 to 3. To classify our CN subjects, 2 additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected non-AD pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cutpoints corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0, 16% stage 1, 12 % stage 2, 3% stage 3, and 23% SNAP.RESULTSThe new criteria subdivide the preclinical phase of AD into stages 1 to 3. To classify our CN subjects, 2 additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected non-AD pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cutpoints corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0, 16% stage 1, 12 % stage 2, 3% stage 3, and 23% SNAP.This cross-sectional evaluation of the NIA-AA criteria for preclinical AD indicates that the 1-3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population-based sample, leaving only 3% unclassified. Future longitudinal validation of the criteria will be important.INTERPRETATIONThis cross-sectional evaluation of the NIA-AA criteria for preclinical AD indicates that the 1-3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population-based sample, leaving only 3% unclassified. Future longitudinal validation of the criteria will be important.
Objective: A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines. Methods: We employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis, and super(18)fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cutpoints. A group of 450 cognitively normal (CN) subjects from a population-based sample was used to develop cognitive cutpoints and to assess population frequencies of the different preclinical AD stages using different cutpoint criteria. Results: The new criteria subdivide the preclinical phase of AD into stages 1 to 3. To classify our CN subjects, 2 additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected non-AD pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cutpoints corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0, 16% stage 1, 12 % stage 2, 3% stage 3, and 23% SNAP. Interpretation: This cross-sectional evaluation of the NIA-AA criteria for preclinical AD indicates that the 1-3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population-based sample, leaving only 3% unclassified. Future longitudinal validation of the criteria will be important ANN NEUROL 2012;
Objective: A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines. Methods: We employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis, and 18fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cutpoints. A group of 450 cognitively normal (CN) subjects from a population‐based sample was used to develop cognitive cutpoints and to assess population frequencies of the different preclinical AD stages using different cutpoint criteria. Results: The new criteria subdivide the preclinical phase of AD into stages 1 to 3. To classify our CN subjects, 2 additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected non‐AD pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cutpoints corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0, 16% stage 1, 12 % stage 2, 3% stage 3, and 23% SNAP. Interpretation: This cross‐sectional evaluation of the NIA‐AA criteria for preclinical AD indicates that the 1–3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population‐based sample, leaving only 3% unclassified. Future longitudinal validation of the criteria will be important ANN NEUROL 2012;
A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines. We employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis, and (18) fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cutpoints. A group of 450 cognitively normal (CN) subjects from a population-based sample was used to develop cognitive cutpoints and to assess population frequencies of the different preclinical AD stages using different cutpoint criteria. The new criteria subdivide the preclinical phase of AD into stages 1 to 3. To classify our CN subjects, 2 additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected non-AD pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cutpoints corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0, 16% stage 1, 12 % stage 2, 3% stage 3, and 23% SNAP. This cross-sectional evaluation of the NIA-AA criteria for preclinical AD indicates that the 1-3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population-based sample, leaving only 3% unclassified. Future longitudinal validation of the criteria will be important.
Objective: A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines. Methods: We employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis, and 18fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cutpoints. A group of 450 cognitively normal (CN) subjects from a population-based sample was used to develop cognitive cutpoints and to assess population frequencies of the different preclinical AD stages using different cutpoint criteria. Results: The new criteria subdivide the preclinical phase of AD into stages 1 to 3. To classify our CN subjects, 2 additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected non-AD pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cutpoints corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0, 16% stage 1, 12 % stage 2, 3% stage 3, and 23% SNAP. Interpretation: This cross-sectional evaluation of the NIA-AA criteria for preclinical AD indicates that the 1-3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population-based sample, leaving only 3% unclassified. Future longitudinal validation of the criteria will be important ANN NEUROL 2012; [PUBLICATION ABSTRACT]
Author Vemuri, Prashanthi
Ivnik, Robert J.
Gunter, Jeffrey L.
Weigand, Stephen D.
Lowe, Val
Petersen, Ronald C.
Wiste, Heather J.
Boeve, Bradley F.
Rocca, Walter A.
Knopman, David S.
Senjem, Matthew L.
Kantarci, Kejal
Roberts, Rosebud O.
Jack Jr, Clifford R.
Author_xml – sequence: 1
  givenname: Clifford R.
  surname: Jack Jr
  fullname: Jack Jr, Clifford R.
  email: jack.clifford@mayo.edu
  organization: Department of Radiology, Mayo Clinic and Foundation, Rochester, MN
– sequence: 2
  givenname: David S.
  surname: Knopman
  fullname: Knopman, David S.
  organization: Department of Neurology, Mayo Clinic and Foundation, Rochester, MN
– sequence: 3
  givenname: Stephen D.
  surname: Weigand
  fullname: Weigand, Stephen D.
  organization: Division of Biomedical Statistics and Informatics, Mayo Clinic and Foundation, Rochester, MN
– sequence: 4
  givenname: Heather J.
  surname: Wiste
  fullname: Wiste, Heather J.
  organization: Division of Biomedical Statistics and Informatics, Mayo Clinic and Foundation, Rochester, MN
– sequence: 5
  givenname: Prashanthi
  surname: Vemuri
  fullname: Vemuri, Prashanthi
  organization: Department of Radiology, Mayo Clinic and Foundation, Rochester, MN
– sequence: 6
  givenname: Val
  surname: Lowe
  fullname: Lowe, Val
  organization: Department of Radiology, Mayo Clinic and Foundation, Rochester, MN
– sequence: 7
  givenname: Kejal
  surname: Kantarci
  fullname: Kantarci, Kejal
  organization: Department of Radiology, Mayo Clinic and Foundation, Rochester, MN
– sequence: 8
  givenname: Jeffrey L.
  surname: Gunter
  fullname: Gunter, Jeffrey L.
  organization: Department of Radiology, Mayo Clinic and Foundation, Rochester, MN
– sequence: 9
  givenname: Matthew L.
  surname: Senjem
  fullname: Senjem, Matthew L.
  organization: Department of Radiology, Mayo Clinic and Foundation, Rochester, MN
– sequence: 10
  givenname: Robert J.
  surname: Ivnik
  fullname: Ivnik, Robert J.
  organization: Department of Psychiatry and Psychology, Mayo Clinic and Foundation, Rochester, MN
– sequence: 11
  givenname: Rosebud O.
  surname: Roberts
  fullname: Roberts, Rosebud O.
  organization: Mayo Clinic Alzheimer's Disease Research Center, Mayo Clinic and Foundation, Rochester, MN
– sequence: 12
  givenname: Walter A.
  surname: Rocca
  fullname: Rocca, Walter A.
  organization: Department of Neurology, Mayo Clinic and Foundation, Rochester, MN
– sequence: 13
  givenname: Bradley F.
  surname: Boeve
  fullname: Boeve, Bradley F.
  organization: Department of Neurology, Mayo Clinic and Foundation, Rochester, MN
– sequence: 14
  givenname: Ronald C.
  surname: Petersen
  fullname: Petersen, Ronald C.
  organization: Department of Neurology, Mayo Clinic and Foundation, Rochester, MN
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26006740$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22488240$$D View this record in MEDLINE/PubMed
BookMark eNqF0k1v1DAQBmALFdFt4cAfQJYQAg5p_RU7OYYVlEplOVAEN8vxTlqXrB3srGD59Xg_kSoBl1iKnnecmcwJOvLBA0JPKTmjhLBz480ZY5JVD9CElpwWFRP1EZoQLkVRUi6O0UlKd4SQWlLyCB0zJqpsyAStGo_DANGMLnjTYzMMMRh7i8eAZ_uXlz6NblyOgIPHzY3zN0XT_7oFt4D4MuEmpWDdBmMb3QjRGdyFiIcItnfe2VzjEMBzl8AkeIwedqZP8GR3nqLP795eT98XVx8vLqfNVWFLRqpCVYK2QlhVyXnZKSNFy1XugvFWMCpM3UklOKFVW7N5KUGBsJ0xNavqEmhH-Sl6ta2bG_u-hDTqhUsW-t54CMukab6Gq1rl538pYbSuSP6UTJ_fo3dhGfOw1gWpFKpUos7q2U4t2wXM9RDdwsSV3s8_gxc7YFKeUheNty79cZKQ3N7avd46G0NKEboDoUSvd0DnHdCbHcj2_J61btz8nTEa1_8r8cP1sPp7ad3Mmn2i2CZcGuHnIWHiNy0VV6X-MrvQ15_esPIr_6Cn_DdLbc9C
CODEN ANNED3
CitedBy_id crossref_primary_10_1212_WNL_0b013e31828728ac
crossref_primary_10_1007_s11910_020_01063_1
crossref_primary_10_1212_WNL_0000000000003050
crossref_primary_10_1007_s00330_017_5103_6
crossref_primary_10_1016_j_jalz_2014_05_1754
crossref_primary_10_1212_WNL_0000000000005476
crossref_primary_10_12779_dnd_2024_23_4_212
crossref_primary_10_1093_brain_aww142
crossref_primary_10_1016_j_jbc_2021_101483
crossref_primary_10_1097_QAD_0000000000003556
crossref_primary_10_1002_hbm_26514
crossref_primary_10_2217_nmt_14_29
crossref_primary_10_1089_brain_2020_0808
crossref_primary_10_1177_0898264315577590
crossref_primary_10_1016_j_neurobiolaging_2017_06_022
crossref_primary_10_14283_jpad_2022_1
crossref_primary_10_1016_j_neurobiolaging_2015_10_025
crossref_primary_10_3389_fnagi_2022_857940
crossref_primary_10_1016_j_trac_2020_115919
crossref_primary_10_3233_JAD_170627
crossref_primary_10_3233_JAD_132474
crossref_primary_10_3233_JAD_151093
crossref_primary_10_1016_j_csbj_2022_08_007
crossref_primary_10_1016_j_neurobiolaging_2023_11_002
crossref_primary_10_1093_brain_awv283
crossref_primary_10_1093_brain_awv288
crossref_primary_10_1002_14651858_CD010775_pub2
crossref_primary_10_1002_14651858_CD010775_pub3
crossref_primary_10_1016_j_jalz_2017_05_002
crossref_primary_10_1093_arclin_acz019
crossref_primary_10_1007_s11910_014_0500_6
crossref_primary_10_1007_s00221_023_06618_5
crossref_primary_10_1016_j_ecoenv_2023_115565
crossref_primary_10_1371_journal_pone_0190478
crossref_primary_10_3233_JAD_221077
crossref_primary_10_1155_2017_5934254
crossref_primary_10_1016_j_jalz_2012_12_004
crossref_primary_10_1017_S1355617716000928
crossref_primary_10_1080_13554794_2019_1599026
crossref_primary_10_2196_62914
crossref_primary_10_1093_brain_awv199
crossref_primary_10_1016_j_dadm_2018_01_006
crossref_primary_10_1016_j_cpet_2013_08_001
crossref_primary_10_1038_mp_2016_206
crossref_primary_10_1097_WCO_0000000000000959
crossref_primary_10_3233_JAD_170960
crossref_primary_10_1093_arclin_acw083
crossref_primary_10_1007_s11307_017_1085_7
crossref_primary_10_1007_s00401_014_1362_3
crossref_primary_10_1038_nrneurol_2016_153
crossref_primary_10_1016_j_arr_2016_01_004
crossref_primary_10_1016_j_ccr_2016_03_001
crossref_primary_10_3233_JAD_180522
crossref_primary_10_3389_fnagi_2022_943380
crossref_primary_10_14283_jpad_2019_12
crossref_primary_10_2217_nmt_13_48
crossref_primary_10_1016_j_cpet_2013_08_002
crossref_primary_10_1038_nrneurol_2018_9
crossref_primary_10_1212_WNL_0000000000003371
crossref_primary_10_1016_j_trsl_2018_01_001
crossref_primary_10_1371_journal_pone_0053587
crossref_primary_10_1212_WNL_0000000000004344
crossref_primary_10_1212_WNL_0b013e31829a3329
crossref_primary_10_1016_j_nicl_2019_101765
crossref_primary_10_3389_fnagi_2020_550664
crossref_primary_10_1111_jgs_14670
crossref_primary_10_1016_j_nicl_2013_02_006
crossref_primary_10_1186_s13024_017_0162_3
crossref_primary_10_1016_j_clinph_2013_10_019
crossref_primary_10_1016_j_arr_2020_101126
crossref_primary_10_1016_j_neuron_2013_12_003
crossref_primary_10_1002_trc2_12005
crossref_primary_10_1016_S1474_4422_13_70044_9
crossref_primary_10_3233_JAD_190254
crossref_primary_10_1002_alz_12890
crossref_primary_10_1007_s00115_018_0488_2
crossref_primary_10_1016_j_pneurobio_2013_01_003
crossref_primary_10_1186_s13195_021_00799_3
crossref_primary_10_1016_j_arr_2017_02_003
crossref_primary_10_1080_14712598_2018_1389885
crossref_primary_10_1016_j_jalz_2018_07_215
crossref_primary_10_1210_clinem_dgaf026
crossref_primary_10_1002_dad2_12104
crossref_primary_10_1016_j_dadm_2016_05_001
crossref_primary_10_1016_j_jamda_2014_09_005
crossref_primary_10_1002_dad2_12102
crossref_primary_10_1016_S1474_4422_14_70194_2
crossref_primary_10_1212_WNL_0000000000003126
crossref_primary_10_3233_JAD_180229
crossref_primary_10_1016_j_dadm_2019_01_001
crossref_primary_10_1111_bpa_12812
crossref_primary_10_1016_j_neurobiolaging_2018_08_022
crossref_primary_10_1002_brb3_1016
crossref_primary_10_3233_JAD_150824
crossref_primary_10_1586_14737175_2014_945522
crossref_primary_10_1007_s40336_015_0110_6
crossref_primary_10_1016_j_neurobiolaging_2015_08_029
crossref_primary_10_1053_j_semnuclmed_2015_09_003
crossref_primary_10_3389_fnins_2023_1209378
crossref_primary_10_1016_j_neurobiolaging_2017_06_005
crossref_primary_10_3233_JAD_170521
crossref_primary_10_1186_s13195_018_0369_8
crossref_primary_10_1016_j_cortex_2017_09_018
crossref_primary_10_3233_JAD_150937
crossref_primary_10_3233_JAD_170887
crossref_primary_10_1021_acs_jproteome_5b00668
crossref_primary_10_1002_alz_13608
crossref_primary_10_1159_000439255
crossref_primary_10_3233_JAD_190367
crossref_primary_10_1021_cn500101j
crossref_primary_10_1016_S1474_4422_15_00135_0
crossref_primary_10_1016_j_remn_2017_05_003
crossref_primary_10_1093_brain_awv029
crossref_primary_10_1016_j_jalz_2012_10_012
crossref_primary_10_1186_s13195_024_01629_y
crossref_primary_10_3233_JAD_210556
crossref_primary_10_1016_j_jalz_2014_09_001
crossref_primary_10_1016_j_neulet_2021_136208
crossref_primary_10_1523_JNEUROSCI_2462_12_2012
crossref_primary_10_1038_s41467_024_47286_5
crossref_primary_10_1177_0271678X16654492
crossref_primary_10_1016_j_neurobiolaging_2016_10_013
crossref_primary_10_3389_fnagi_2015_00164
crossref_primary_10_1093_brain_awy049
crossref_primary_10_1016_j_neurobiolaging_2017_04_024
crossref_primary_10_1186_1471_2105_16_S7_S8
crossref_primary_10_1007_s12264_015_1546_4
crossref_primary_10_3233_JAD_170580
crossref_primary_10_1212_01_wnl_0000435556_21319_e4
crossref_primary_10_1007_s12170_014_0401_x
crossref_primary_10_1016_j_cpet_2016_08_003
crossref_primary_10_1212_WNL_0000000000000170
crossref_primary_10_1080_17460441_2024_2348142
crossref_primary_10_1212_WNL_0000000000004652
crossref_primary_10_1007_s00259_023_06440_9
crossref_primary_10_1111_psyg_12697
crossref_primary_10_33590_emjneurol_10311025
crossref_primary_10_1186_s13024_021_00512_w
crossref_primary_10_1097_WAD_0000000000000533
crossref_primary_10_1016_j_neurobiolaging_2017_12_010
crossref_primary_10_1016_j_bj_2023_03_002
crossref_primary_10_1093_brain_awy150
crossref_primary_10_1111_jnp_12079
crossref_primary_10_1002_alz_14524
crossref_primary_10_1016_j_bbadis_2013_09_010
crossref_primary_10_1093_brain_awaa327
crossref_primary_10_1371_journal_pone_0201852
crossref_primary_10_1097_RLU_0000000000005793
crossref_primary_10_1002_ana_24960
crossref_primary_10_1080_13825585_2023_2249190
crossref_primary_10_1016_j_nicl_2013_08_007
crossref_primary_10_3233_JAD_210218
crossref_primary_10_1111_jon_12138
crossref_primary_10_1016_j_nbd_2014_05_001
crossref_primary_10_1186_s13195_014_0079_9
crossref_primary_10_1093_brain_awz150
crossref_primary_10_17340_jkna_2015_4_2
crossref_primary_10_1002_alz_13403
crossref_primary_10_1002_ana_24719
crossref_primary_10_1016_j_psyneuen_2021_105248
crossref_primary_10_1007_s40520_017_0741_8
crossref_primary_10_1212_WNL_0000000000004521
crossref_primary_10_17340_jkna_2019_1_1
crossref_primary_10_1016_j_exger_2022_111715
crossref_primary_10_1016_j_trci_2019_08_009
crossref_primary_10_1093_braincomms_fcab182
crossref_primary_10_1016_j_conb_2015_09_002
crossref_primary_10_1016_j_jalz_2016_10_006
crossref_primary_10_3233_JAD_170201
crossref_primary_10_1016_j_jalz_2012_06_002
crossref_primary_10_1016_j_neurobiolaging_2021_09_019
crossref_primary_10_1038_s41467_023_38878_8
crossref_primary_10_1093_brain_awy053
crossref_primary_10_3389_fncel_2014_00113
crossref_primary_10_3233_JAD_180240
crossref_primary_10_1016_S1474_4422_17_30077_7
crossref_primary_10_1016_j_clinph_2015_08_010
crossref_primary_10_1002_hbm_23897
crossref_primary_10_1016_j_jgr_2024_02_002
crossref_primary_10_1523_JNEUROSCI_4409_12_2013
crossref_primary_10_1371_journal_pone_0091400
crossref_primary_10_3390_nu16121952
crossref_primary_10_2174_1874609812666190112095430
crossref_primary_10_1016_j_neuroimage_2013_02_059
crossref_primary_10_1007_s00415_022_11025_x
crossref_primary_10_1016_j_nicl_2017_08_022
crossref_primary_10_1016_j_neurobiolaging_2016_03_025
crossref_primary_10_1002_alz_12377
crossref_primary_10_3233_JAD_160326
crossref_primary_10_1016_S1474_4422_13_70217_5
crossref_primary_10_3233_JAD_160204
crossref_primary_10_14283_jpad_2019_25
crossref_primary_10_1093_braincomms_fcad058
crossref_primary_10_1212_WNL_0000000000000386
crossref_primary_10_1159_000353280
crossref_primary_10_1016_j_mayocp_2017_02_011
crossref_primary_10_3233_JAD_170261
crossref_primary_10_3389_fnagi_2022_829049
crossref_primary_10_1007_s00259_021_05246_x
crossref_primary_10_1038_mp_2016_226
crossref_primary_10_1016_j_remnie_2017_10_017
crossref_primary_10_3233_JAD_170147
crossref_primary_10_1016_j_neurobiolaging_2016_03_014
crossref_primary_10_1016_j_neuropsychologia_2016_09_024
crossref_primary_10_1002_ana_23816
crossref_primary_10_18632_oncotarget_26162
crossref_primary_10_1002_ana_23931
crossref_primary_10_1002_alz_12140
crossref_primary_10_1016_j_dadm_2017_01_004
crossref_primary_10_1002_acn3_192
crossref_primary_10_1038_nrneurol_2012_241
crossref_primary_10_3233_JAD_150785
crossref_primary_10_1212_WNL_0b013e31826e2696
crossref_primary_10_1016_j_neurol_2020_01_356
crossref_primary_10_3348_jksr_2022_0052
crossref_primary_10_3233_JAD_181243
crossref_primary_10_1016_j_cger_2013_07_009
crossref_primary_10_1016_S0140_6736_20_30689_9
crossref_primary_10_1016_j_cger_2013_07_006
crossref_primary_10_1007_s11065_017_9345_5
crossref_primary_10_2217_fnl_2018_0003
crossref_primary_10_3233_JAD_190077
crossref_primary_10_15252_emmm_201506123
crossref_primary_10_3233_JAD_210525
crossref_primary_10_1080_14728214_2020_1808621
crossref_primary_10_3390_medicines9080042
crossref_primary_10_1002_brb3_2850
crossref_primary_10_3233_JAD_181261
crossref_primary_10_3389_fnagi_2016_00139
crossref_primary_10_1007_s00406_015_0628_7
crossref_primary_10_1212_WNL_0000000000001209
crossref_primary_10_1016_S1474_4422_13_70194_7
crossref_primary_10_1097_MD_0000000000015972
crossref_primary_10_1016_j_neurobiolaging_2018_06_023
crossref_primary_10_1212_WNL_0b013e318295d6cf
crossref_primary_10_1002_alz_13692
crossref_primary_10_1093_gerona_glac064
crossref_primary_10_3233_JAD_171145
crossref_primary_10_1016_j_jalz_2013_09_003
crossref_primary_10_1016_j_biopsych_2020_06_029
crossref_primary_10_3233_JAD_240005
crossref_primary_10_1016_j_trci_2017_10_004
crossref_primary_10_1111_psyg_12729
crossref_primary_10_1016_j_neuropsychologia_2017_12_014
crossref_primary_10_1093_brain_awz099
crossref_primary_10_3233_JAD_160365
crossref_primary_10_1212_WNL_0000000000000467
crossref_primary_10_1016_j_freeradbiomed_2017_08_028
crossref_primary_10_1016_S1474_4422_14_70252_2
crossref_primary_10_1186_s13195_021_00835_2
crossref_primary_10_1002_VIW_20220080
crossref_primary_10_1016_j_neurobiolaging_2017_10_023
crossref_primary_10_1016_j_jalz_2015_05_002
crossref_primary_10_1016_j_jalz_2015_05_001
crossref_primary_10_1016_j_sleep_2012_10_009
crossref_primary_10_1111_jnc_15306
crossref_primary_10_1186_s13195_024_01396_w
crossref_primary_10_1016_S1474_4422_15_00323_3
crossref_primary_10_1523_JNEUROSCI_3266_12_2012
crossref_primary_10_1038_s41582_024_00962_y
crossref_primary_10_1016_j_jalz_2018_03_002
crossref_primary_10_1016_S1474_4422_15_00335_X
crossref_primary_10_1016_j_jalz_2016_06_2357
crossref_primary_10_1016_j_nbd_2025_106866
crossref_primary_10_1093_cercor_bhx236
crossref_primary_10_3233_JAD_160273
crossref_primary_10_1016_j_neurol_2022_12_006
crossref_primary_10_1016_S1474_4422_18_30029_2
crossref_primary_10_1016_j_neulet_2016_08_045
crossref_primary_10_1186_s12916_015_0297_4
crossref_primary_10_3233_JAD_160143
crossref_primary_10_3233_JAD_161114
crossref_primary_10_1007_s11910_014_0498_9
crossref_primary_10_3389_fendo_2024_1350318
crossref_primary_10_3233_JAD_161233
crossref_primary_10_1016_j_jalz_2016_06_2365
crossref_primary_10_1186_1750_1326_8_20
crossref_primary_10_1212_WNL_0000000000001774
crossref_primary_10_1212_WNL_0b013e3182872830
crossref_primary_10_1016_j_jalz_2016_06_2364
crossref_primary_10_1212_WNL_0000000000002624
crossref_primary_10_1016_j_jalz_2014_03_006
crossref_primary_10_1016_j_neurobiolaging_2014_04_006
crossref_primary_10_1016_S1474_4422_15_00182_9
crossref_primary_10_3390_nu10122007
crossref_primary_10_1007_s00401_024_02743_9
crossref_primary_10_1016_j_biopsych_2014_08_024
crossref_primary_10_7554_eLife_105446_3
crossref_primary_10_1038_s41598_019_42632_w
crossref_primary_10_1016_j_arr_2014_02_001
crossref_primary_10_1002_mds_26666
crossref_primary_10_1016_j_jalz_2013_01_009
crossref_primary_10_1093_braincomms_fcab226
crossref_primary_10_1016_j_expneurol_2014_08_021
crossref_primary_10_1212_WNL_0000000000002979
crossref_primary_10_1002_alz_14469
crossref_primary_10_1038_s41398_021_01628_9
crossref_primary_10_1097_WCO_0000000000000036
crossref_primary_10_1038_s41398_022_01899_w
crossref_primary_10_1212_WNL_0000000000000550
crossref_primary_10_1371_journal_pone_0079378
crossref_primary_10_1016_j_jalz_2013_01_004
crossref_primary_10_2967_jnumed_113_132647
crossref_primary_10_1038_nrneurol_2013_107
crossref_primary_10_1016_j_neuroimage_2015_03_020
crossref_primary_10_1186_s13024_018_0301_5
crossref_primary_10_3233_JAD_150128
crossref_primary_10_1016_j_neurobiolaging_2017_03_023
crossref_primary_10_1371_journal_pone_0217026
crossref_primary_10_1111_ene_15337
crossref_primary_10_1007_s13311_021_01027_4
crossref_primary_10_3233_JAD_160052
crossref_primary_10_1212_WNL_0b013e31828ab35d
crossref_primary_10_1016_j_neurobiolaging_2016_01_133
crossref_primary_10_3233_JAD_179908
crossref_primary_10_1016_j_neurobiolaging_2017_01_013
crossref_primary_10_1186_s13195_014_0062_5
crossref_primary_10_1007_s15005_014_0805_7
crossref_primary_10_1002_ana_26492
crossref_primary_10_1093_braincomms_fcaa068
crossref_primary_10_1126_scitranslmed_aaf2362
crossref_primary_10_1212_WNL_0000000000003812
crossref_primary_10_1007_s00259_016_3462_x
crossref_primary_10_1016_j_nicl_2018_02_008
crossref_primary_10_1080_15622975_2017_1375556
crossref_primary_10_3233_JAD_150117
crossref_primary_10_3233_JAD_150358
crossref_primary_10_1371_journal_pone_0188501
crossref_primary_10_1080_14737175_2024_2367016
crossref_primary_10_3233_JAD_151201
crossref_primary_10_1007_s13139_022_00767_1
crossref_primary_10_1007_s10433_022_00735_w
crossref_primary_10_1007_s10072_016_2477_1
crossref_primary_10_3389_fdgth_2021_750549
crossref_primary_10_1111_joim_12190
crossref_primary_10_1111_bpa_12399
crossref_primary_10_1016_j_jalz_2016_01_006
crossref_primary_10_1016_j_neurobiolaging_2021_04_024
crossref_primary_10_1038_nrneurol_2013_21
crossref_primary_10_1016_j_jalz_2015_06_1887
crossref_primary_10_1016_j_neurobiolaging_2013_09_028
crossref_primary_10_3174_ajnr_A3847
crossref_primary_10_1007_s13311_021_01026_5
crossref_primary_10_1111_joim_12199
crossref_primary_10_1186_s13195_016_0220_z
crossref_primary_10_1212_WNL_0000000000001738
crossref_primary_10_3233_JAD_181088
crossref_primary_10_7554_eLife_105446
crossref_primary_10_3389_fnagi_2014_00316
crossref_primary_10_1016_j_gmhc_2013_04_003
crossref_primary_10_1016_j_jalz_2014_12_001
crossref_primary_10_1038_s41598_021_95206_0
crossref_primary_10_1016_j_neurobiolaging_2013_09_039
crossref_primary_10_1007_s12021_015_9266_5
crossref_primary_10_1016_j_eujim_2022_102133
crossref_primary_10_1186_1741_7015_10_127
crossref_primary_10_1080_14728214_2016_1241232
crossref_primary_10_1016_S1474_4422_17_30116_3
crossref_primary_10_1053_j_gastro_2023_05_052
crossref_primary_10_1212_WNL_0000000000209753
crossref_primary_10_1093_cercor_bhad017
crossref_primary_10_1176_appi_ajp_2016_16111317
crossref_primary_10_3233_JAD_179943
crossref_primary_10_1371_journal_pone_0248122
crossref_primary_10_1038_s41467_019_10152_w
crossref_primary_10_3233_JAD_190624
crossref_primary_10_1016_j_jalz_2018_02_018
crossref_primary_10_1186_s13024_020_00374_8
crossref_primary_10_1212_WNL_0000000000002923
crossref_primary_10_1517_14712598_2014_935332
crossref_primary_10_1016_j_neuron_2014_10_038
crossref_primary_10_1212_WNL_0000000000001712
crossref_primary_10_1016_j_neurobiolaging_2014_02_015
crossref_primary_10_1016_j_nbd_2022_105887
crossref_primary_10_1212_WNL_0000000000007248
crossref_primary_10_1016_j_dadm_2016_10_007
crossref_primary_10_1016_j_nicl_2021_102717
crossref_primary_10_1002_dad2_12271
crossref_primary_10_1007_s11065_014_9267_4
crossref_primary_10_3233_JAD_200087
crossref_primary_10_3389_fnins_2019_00038
crossref_primary_10_1212_WNL_0000000000000856
crossref_primary_10_1212_WNL_0000000000000977
crossref_primary_10_1186_s13195_019_0487_y
crossref_primary_10_1212_01_wnl_0000438229_56094_54
crossref_primary_10_1002_dad2_12026
crossref_primary_10_1016_S1474_4422_14_70207_8
crossref_primary_10_1007_s13311_021_01146_y
crossref_primary_10_1093_brain_awv326
crossref_primary_10_1212_CPJ_0000000000200291
crossref_primary_10_3233_JAD_179928
crossref_primary_10_1016_j_neurobiolaging_2016_06_011
crossref_primary_10_1038_nrneurol_2015_251
crossref_primary_10_1016_j_jneumeth_2022_109581
crossref_primary_10_1038_nrneurol_2014_214
crossref_primary_10_1093_cercor_bhu238
crossref_primary_10_1186_s13195_018_0362_2
crossref_primary_10_1007_s00401_015_1407_2
crossref_primary_10_1590_S1980_5764_2016DN1002003
crossref_primary_10_1093_brain_awv112
crossref_primary_10_1016_j_nrl_2017_12_011
crossref_primary_10_1016_S1474_4422_16_30125_9
crossref_primary_10_1093_gerona_glx240
crossref_primary_10_1093_arclin_acac016
crossref_primary_10_15252_emmm_201809712
crossref_primary_10_1155_2014_826503
crossref_primary_10_1016_j_smrv_2016_02_002
crossref_primary_10_1016_j_jalz_2016_06_001
crossref_primary_10_3233_JAD_161197
crossref_primary_10_1016_j_ijpsycho_2015_02_005
crossref_primary_10_3233_JAD_161194
crossref_primary_10_1016_j_neuroimage_2017_05_049
crossref_primary_10_1016_j_neurobiolaging_2015_04_013
crossref_primary_10_1016_S1474_4422_15_00093_9
crossref_primary_10_2217_fnl_14_40
crossref_primary_10_1186_2051_5960_2_26
crossref_primary_10_3233_JAD_141494
crossref_primary_10_1186_s40478_021_01225_3
crossref_primary_10_1093_jmp_jhad009
crossref_primary_10_1016_j_jalz_2016_08_005
crossref_primary_10_1038_s42003_024_07076_7
crossref_primary_10_1186_s12916_023_02811_z
crossref_primary_10_1002_dad2_12198
crossref_primary_10_1212_WNL_0b013e3182a8418b
crossref_primary_10_1016_j_coph_2013_10_002
crossref_primary_10_3389_fnagi_2021_698571
crossref_primary_10_1016_j_trci_2018_01_003
crossref_primary_10_1002_ana_25684
crossref_primary_10_1016_j_neurobiolaging_2016_06_003
crossref_primary_10_3390_diagnostics10050326
crossref_primary_10_3390_brainsci13101443
crossref_primary_10_1212_01_wnl_0000435568_38352_2e
crossref_primary_10_1016_j_bandc_2017_11_003
crossref_primary_10_18632_aging_103678
crossref_primary_10_1007_s00259_019_04379_4
crossref_primary_10_3389_fnagi_2023_1121500
crossref_primary_10_1212_WNL_0000000000000939
crossref_primary_10_1016_j_jalz_2019_03_016
crossref_primary_10_1126_scitranslmed_3002609
crossref_primary_10_3233_JAD_160907
crossref_primary_10_1016_S0140_6736_21_01421_5
crossref_primary_10_1016_j_neurobiolaging_2017_09_027
crossref_primary_10_3233_JAD_200059
crossref_primary_10_1016_j_jalz_2014_04_009
crossref_primary_10_1016_j_neurobiolaging_2014_03_006
crossref_primary_10_1093_cercor_bht076
crossref_primary_10_1016_j_neuropsychologia_2015_04_034
crossref_primary_10_1155_2014_302712
crossref_primary_10_1016_j_neurobiolaging_2013_10_081
crossref_primary_10_1016_j_nrleng_2017_12_012
crossref_primary_10_1007_s00406_016_0732_3
crossref_primary_10_1053_j_semnuclmed_2016_09_006
crossref_primary_10_1016_j_nicl_2013_11_010
crossref_primary_10_1002_mds_26191
crossref_primary_10_1073_pnas_1525309113
crossref_primary_10_1016_j_archger_2022_104668
crossref_primary_10_1016_j_nicl_2020_102312
crossref_primary_10_1016_j_neurobiolaging_2023_09_012
crossref_primary_10_1186_s13195_023_01217_6
crossref_primary_10_1007_s00401_014_1349_0
crossref_primary_10_3348_kjr_2021_0323
crossref_primary_10_1016_j_jad_2019_03_055
crossref_primary_10_3233_JAD_180966
Cites_doi 10.2967/jnumed.108.057612
10.1212/WNL.0b013e3181af79e5
10.1097/01.mlr.0000163645.41407.09
10.1002/ana.21904
10.1016/S1474-4422(09)70299-6
10.1212/WNL.0b013e3181e8e8b8
10.1001/archneur.65.11.1509
10.1148/radiology.172.2.2748838
10.1017/S1355617701755105
10.3233/JAD-2009-1227
10.1212/WNL.55.1.134
10.1093/brain/awp062
10.1118/1.3116776
10.1021/jm030026b
10.1212/01.wnl.0000219668.47116.e6
10.1093/brain/awq277
10.1002/ana.22248
10.1001/archneurol.2009.316
10.1016/j.neuropsychologia.2011.04.012
10.1212/01.wnl.0000271090.28148.24
10.1002/ana.21953
10.1002/ana.20318
10.1016/j.neuroimage.2007.09.073
10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X
10.1212/WNL.0b013e3181f11d85
10.1212/WNL.55.3.370
10.1093/cercor/bhn113
10.1016/S0896-6273(02)00569-X
10.1016/j.jalz.2010.03.004
10.1002/ana.22315
10.1001/archneur.63.7.936
10.1093/brain/awm336
10.1212/WNL.0b013e3181d3e3e9
10.2967/jnumed.108.058529
10.1212/01.WNL.0000115115.98960.37
10.1212/01.wnl.0000261919.22630.ea
10.1212/01.WNL.0000118211.78503.F5
10.1001/jama.292.23.2901
10.1002/ana.21559
10.1002/ana.22333
10.1001/archneurol.2009.27
10.1001/jama.290.12.1624
10.1002/ana.21610
10.1177/0891988705281872
10.1093/brain/awq154
10.1016/j.jalz.2010.03.003
10.1016/j.jalz.2011.03.003
10.1148/radiol.11101637
10.1212/01.wnl.0000324924.91351.7d
10.1002/emmm.200900048
10.1002/ana.21706
10.1038/nature08538
10.1371/journal.pone.0012853
10.1093/brain/awn320
10.1093/jnen/62.11.1087
10.1212/WNL.0b013e3182166e96
10.1016/j.neurobiolaging.2010.04.007
10.1093/brain/awp007
10.1001/archneurol.2009.272
10.1002/ana.20009
10.1212/01.wnl.0000228230.26044.a4
10.1159/000115751
10.1038/sj.jcbfm.9600146
10.1056/NEJM199603213341202
10.1016/j.neuroimage.2008.05.012
10.1001/archneurol.2009.269
10.1002/ana.21208
10.1001/archneurol.2011.123
10.1016/j.neurobiolaging.2008.02.007
10.1016/j.neuroimage.2011.01.049
ContentType Journal Article
Copyright Copyright © 2012 American Neurological Association
2015 INIST-CNRS
Copyright © 2012 American Neurological Association.
Copyright_xml – notice: Copyright © 2012 American Neurological Association
– notice: 2015 INIST-CNRS
– notice: Copyright © 2012 American Neurological Association.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
7X8
DOI 10.1002/ana.22628
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Toxicology Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Neurosciences Abstracts

MEDLINE
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 775
ExternalDocumentID 3276327811
22488240
26006740
10_1002_ana_22628
ANA22628
ark_67375_WNG_TSB25X3M_C
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH/National Institute on Aging
  funderid: R01 AG11378; U01 AG006786; P50 AG16574; C06 RR018898
– fundername: NIA NIH HHS
  grantid: U01 AG006786
– fundername: NIA NIH HHS
  grantid: P50 AG016574
– fundername: NIA NIH HHS
  grantid: R01 AG11378
– fundername: NIA NIH HHS
  grantid: P50 AG16574
– fundername: NIA NIH HHS
  grantid: R01 AG041851
– fundername: NIA NIH HHS
  grantid: R01 AG011378
– fundername: NCRR NIH HHS
  grantid: C06 RR018898
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRZS
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
7X8
ID FETCH-LOGICAL-c5208-7841b44c786d5f7a64b3761023b4214a9f6743018b92d56e7e4cfaa92895e1f13
IEDL.DBID DR2
ISSN 0364-5134
1531-8249
IngestDate Fri Jul 11 01:21:38 EDT 2025
Fri Jul 11 09:55:30 EDT 2025
Fri Jul 25 12:19:45 EDT 2025
Wed Feb 19 01:51:26 EST 2025
Mon Jul 21 09:13:34 EDT 2025
Tue Jul 01 02:24:02 EDT 2025
Thu Apr 24 23:02:45 EDT 2025
Wed Aug 20 07:25:47 EDT 2025
Wed Oct 30 09:51:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Nervous system diseases
Senescence
Alzheimer disease
Central nervous system disease
Surgical approach
Degenerative disease
Asymptomatic
Cerebral disorder
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
Copyright © 2012 American Neurological Association.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5208-7841b44c786d5f7a64b3761023b4214a9f6743018b92d56e7e4cfaa92895e1f13
Notes NIH/National Institute on Aging - No. R01 AG11378; No. U01 AG006786; No. P50 AG16574; No. C06 RR018898
ArticleID:ANA22628
ark:/67375/WNG-TSB25X3M-C
istex:802930EF123841497EA56C8247B3C65774CCEFD5
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22488240
PQID 1516475749
PQPubID 946345
PageCount 11
ParticipantIDs proquest_miscellaneous_1520379720
proquest_miscellaneous_1021980786
proquest_journals_1516475749
pubmed_primary_22488240
pascalfrancis_primary_26006740
crossref_primary_10_1002_ana_22628
crossref_citationtrail_10_1002_ana_22628
wiley_primary_10_1002_ana_22628_ANA22628
istex_primary_ark_67375_WNG_TSB25X3M_C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2012
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: June 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: Hoboken, NJ
– name: United States
– name: Minneapolis
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
– name: Wiley Subscription Services, Inc
References Jagust WJ, Bandy D, Chen K, et al. The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core. Alzheimers Dement 2010; 6: 221-229.
Becker JA, Hedden T, Carmasin J, et al. Amyloid-β associated cortical thinning in clinically normal elderly. Ann Neurol 2011; 69: 1032-1042.
Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann Neurol 2004; 55: 306-319.
Desikan RS, Sabuncu MR, Schmansky NJ, et al. Selective disruption of the cerebral neocortex in Alzheimer's disease. PLoS One 2010; 5: e12853.
Stomrud E, Hansson O, Zetterberg H, et al. Correlation of longitudinal cerebrospinal fluid biomarkers with cognitive decline in healthy older adults. Arch Neurol 2010; 67: 217-223.
Bouwman FH, Schoonenboom NS, Verwey NA, et al. CSF biomarker levels in early and late onset Alzheimer's disease. Neurobiol Aging 2009; 30: 1895-1901.
Jack CR Jr, Bernstein MA, Borowski BJ, et al. Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative. Alzheimers Dement 2010; 6: 212-220.
Fischl B, Salat DH, Busa E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33: 341-355.
Aizenstein HJ, Nebes RD, Saxton JA, et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 2008; 65: 1509-1517.
Dickerson BC, Stoub TR, Shah RC, et al. Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 2011; 76: 1395-1402.
Gunter JL, Bernstein MA, Borowski BJ, et al. Measurement of MRI scanner performance with the ADNI phantom. Med Phys 2009; 36: 2193-2205.
Fagan AM, Mintun MA, Shah AR, et al. Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer's disease. EMBO Mol Med 2009; 1: 371-380.
Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol 2009; 66: 200-208.
Landau SM, Harvey D, Madison CM, et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 2010; 75: 230-238.
Rentz DM, Locascio JJ, Becker JA, et al. Cognition, reserve, and amyloid deposition in normal aging. Ann Neurol 2010; 67: 353-364.
Moffat SD, Szekely CA, Zonderman AB, et al. Longitudinal change in hippocampal volume as a function of apolipoprotein E genotype. Neurology 2000; 55: 134-136.
Jack CR Jr, Wiste HJ, Vemuri P, et al. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease. Brain 2010; 133: 3336-3348.
Petersen RC, Roberts RO, Knopman DS, et al. Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging. Neurology 2010; 75: 889-897.
Vemuri P, Wiste HJ, Weigand SD, et al. Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease. Ann Neurol 2010; 67: 308-316.
Sonnen JA, Larson EB, Crane PK, et al. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann Neurol 2007; 62: 406-413.
Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 2007; 69: 2197-2204.
Schneider JA, Wilson RS, Bienias JL, et al. Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology. Neurology 2004; 62: 1148-1155.
Jack CR Jr, Lowe VJ, Senjem ML, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain 2008; 131( pt 3): 665-680.
Langa KM, Foster NL, Larson EB. Mixed dementia: emerging concepts and therapeutic implications. JAMA 2004; 292: 2901-2908.
Rowe CC, Ellis KA, Rimajova M, et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 2010; 31: 1275-1283.
Jack CR Jr, Lowe VJ, Weigand SD, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain 2009; 132( pt 5): 1355-1365.
Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 2010; 9: 119-128.
Knopman DS, Parisi JE, Salviati A, et al. Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 2003; 62: 1087-1095.
Mathis CA, Wang Y, Holt DP, et al. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 2003; 46: 2740-2754.
Roberts RO, Geda YE, Knopman DS, et al. The Mayo Clinic Study of Aging: design and sampling, participation, baseline measures and sample characteristics. Neuroepidemiology 2008; 30: 58-69.
Villemagne VL, Pike KE, Chételat G, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol 2011; 69: 181-192.
Chen K, Ayutyanont N, Langbaum JB, et al. Characterizing Alzheimer's disease using a hypometabolic convergence index. Neuroimage 2011; 56: 52-60.
Schmitt FA, Davis DG, Wekstein DR, et al. "Preclinical" AD revisited: neuropathology of cognitively normal older adults. Neurology 2000; 55: 370-376.
Vemuri P, Whitwell JL, Kantarci K, et al. Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage. Neuroimage 2008; 42: 559-567.
Resnick SM, Sojkova J, Zhou Y, et al. Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB. Neurology 2010; 74: 807-815.
Petrovitch H, Ross GW, Steinhorn SC, et al. AD lesions and infarcts in demented and non-demented Japanese-American men. Ann Neurol 2005; 57: 98-103.
Glasgow RE, Magid DJ, Beck A, et al. Practical clinical trials for translating research to practice: design and measurement recommendations. Med Care 2005; 43: 551-557.
Peskind ER, Li G, Shofer J, et al. Age and apolipoprotein E*4 allele effects on cerebrospinal fluid beta-amyloid 42 in adults with normal cognition. Arch Neurol 2006; 63: 936-939.
Pike KE, Ellis KA, Villemagne VL, et al. Cognition and beta-amyloid in preclinical Alzheimer's disease: data from the AIBL study. Neuropsychologia 2011; 49: 2384-2390.
Mintun MA, Larossa GN, Sheline YI, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006; 67: 446-452.
Morris JC, Roe CM, Grant EA, et al. Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch Neurol 2009; 66: 1469-1475.
Rowe CC, Ng S, Ackermann U, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007; 68: 1718-1725.
Reed BR, Mungas D, Farias ST, et al. Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain 2010; 133( pt 8): 2196-2209.
Albert MS, Moss MB, Tanzi R, Jones K. Preclinical prediction of AD using neuropsychological tests. J Int Neuropsychol Soc 2001; 7: 631-639.
Bennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006; 66: 1837-1844.
McNamee RL, Yee SH, Price JC, et al. Consideration of optimal time window for Pittsburgh compound B PET summed uptake measurements. J Nucl Med 2009; 50: 348-355.
Shaw LM, Vanderstichele H, Knapik-Czajka M, et al. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol 2009; 65: 403-413.
Lowe VJ, Kemp BJ, Jack CR Jr, et al. Comparison of 18F-FDG and PiB PET in cognitive impairment. J Nucl Med 2009; 50: 878-886.
Whitwell JL, Josephs KA, Murray ME, et al. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology 2008; 71: 743-749.
Fagan AM, Head D, Shah AR, et al. Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Ann Neurol 2009; 65: 176-183.
Craft S. The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch Neurol 2009; 66: 300-305.
Schneider JA, Aggarwal NT, Barnes L, et al. The neuropathology of older persons with and without dementia from community versus clinic cohorts. J Alzheimers Dis 2009; 18: 691-701.
Price JC, Klunk WE, Lopresti BJ, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh compound-B. J Cereb Blood Flow Metab 2005; 25: 1528-1547.
Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011; 7: 280-292.
Reiman EM, Caselli RJ, Yun LS, et al. Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 1996; 334: 752-758.
Vemuri P, Wiste HJ, Weigand SD, et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 2009; 73: 287-293.
Tunis SR, Stryer DB, Clancy CM. Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy. JAMA 2003; 290: 1624-1632.
Storandt M, Mintun MA, Head D, Morris JC. Cognitive decline and brain volume loss as signatures of cerebral amyloid-beta peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Abeta deposition. Arch Neurol 2009; 66: 1476-1481.
Schott JM, Bartlett JW, Fox NC, et al. Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Abeta1-42. Ann Neurol 2010; 68: 825-834.
Schuff N, Woerner N, Boreta L, et al. MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE gen
2004; 62
2008; 39
1999; 45
2011; 56
2008; 30
2008; 71
2005; 25
2010; 67
2006; 63
2010; 68
2006; 67
2009; 50
2006; 66
2000; 55
2004; 292
2003; 46
2008; 65
2011; 68
2007; 62
2011; 69
1996; 334
2009; 19
2010; 5
2007; 68
2010; 74
2010; 6
2007; 69
2010; 9
2009; 18
2011; 259
2009; 66
2010; 75
2010; 31
2009; 65
2002; 33
2009; 132
2009
2011; 76
2005; 43
2003; 290
2011; 7
2005; 46
2004; 55
2009; 36
2009; 30
2009; 73
2001; 7
2010; 133
1989; 172
2009; 461
2008; 42
2011; 49
2003; 62
2009; 1
2008; 131
2005; 18
2005; 57
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_17_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_64_2
e_1_2_7_45_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_71_2
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
Lopresti BJ (e_1_2_7_19_2) 2005; 46
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
Schuff N (e_1_2_7_57_2) 2009; 132
e_1_2_7_72_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_38_2
e_1_2_7_59_2
15079015 - Neurology. 2004 Apr 13;62(7):1148-55
18054253 - Neuroimage. 2008 Feb 1;39(3):1186-97
20049742 - EMBO Mol Med. 2009 Nov;1(8-9):371-80
19443597 - J Nucl Med. 2009 Jun;50(6):878-86
10072051 - Ann Neurol. 1999 Mar;45(3):358-68
21529702 - Neuropsychologia. 2011 Jul;49(9):2384-90
16831961 - Arch Neurol. 2006 Jul;63(7):936-9
21181717 - Ann Neurol. 2010 Dec;68(6):825-34
19223409 - J Nucl Med. 2009 Mar;50(3):348-55
21467255 - Radiology. 2011 Jun;259(3):844-51
20886094 - PLoS One. 2010;5(9):e12853
17879383 - Ann Neurol. 2007 Oct;62(4):406-13
2748838 - Radiology. 1989 Aug;172(2):549-54
12801237 - J Med Chem. 2003 Jun 19;46(13):2740-54
19273747 - Arch Neurol. 2009 Mar;66(3):300-5
10932270 - Neurology. 2000 Aug 8;55(3):370-6
14656067 - J Neuropathol Exp Neurol. 2003 Nov;62(11):1087-95
16330558 - J Nucl Med. 2005 Dec;46(12):1959-72
15944649 - J Cereb Blood Flow Metab. 2005 Nov;25(11):1528-47
17502554 - Neurology. 2007 May 15;68(20):1718-25
19042931 - Brain. 2009 May;132(Pt 5):1310-23
21437929 - Ann Neurol. 2011 Jun;69(6):1032-42
18263627 - Brain. 2008 Mar;131(Pt 3):665-80
18632739 - Cereb Cortex. 2009 Mar;19(3):497-510
19296504 - Ann Neurol. 2009 Apr;65(4):403-13
20472326 - Neurobiol Aging. 2010 Aug;31(8):1275-83
8592548 - N Engl J Med. 1996 Mar 21;334(12):752-8
20008650 - Arch Neurol. 2009 Dec;66(12):1469-75
19001171 - Arch Neurol. 2008 Nov;65(11):1509-17
20591858 - Brain. 2010 Aug;133(Pt 8):2196-209
21490323 - Neurology. 2011 Apr 19;76(16):1395-402
15908849 - Med Care. 2005 Jun;43(6):551-7
15562458 - Ann Neurol. 2005 Jan;57(1):98-103
19260027 - Ann Neurol. 2009 Feb;65(2):176-83
14506122 - JAMA. 2003 Sep 24;290(12):1624-32
14991808 - Ann Neurol. 2004 Mar;55(3):306-19
11459114 - J Int Neuropsychol Soc. 2001 Jul;7(5):631-9
10891924 - Neurology. 2000 Jul 12;55(1):134-6
19829371 - Nature. 2009 Oct 15;461(7266):916-22
20142530 - Arch Neurol. 2010 Feb;67(2):217-23
20592257 - Neurology. 2010 Jul 20;75(3):230-8
18765650 - Neurology. 2008 Sep 2;71(10):743-9
20008651 - Arch Neurol. 2009 Dec;66(12):1476-81
20373347 - Ann Neurol. 2010 Mar;67(3):353-64
20083042 - Lancet Neurol. 2010 Jan;9(1):119-28
21276856 - Neuroimage. 2011 May 1;56(1):52-60
11832223 - Neuron. 2002 Jan 31;33(3):341-55
18572417 - Neuroimage. 2008 Aug 15;42(2):559-67
19610308 - Med Phys. 2009 Jun;36(6):2193-205
19251758 - Brain. 2009 Apr;132(Pt 4):1067-77
21670386 - Arch Neurol. 2011 Oct;68(10):1257-66
19749406 - J Alzheimers Dis. 2009;18(3):691-701
20820000 - Neurology. 2010 Sep 7;75(10):889-97
21514248 - Alzheimers Dement. 2011 May;7(3):280-92
19636048 - Neurology. 2009 Jul 28;73(4):287-93
20451870 - Alzheimers Dement. 2010 May;6(3):221-9
16894106 - Neurology. 2006 Aug 8;67(3):446-52
20451869 - Alzheimers Dement. 2010 May;6(3):212-20
18403055 - Neurobiol Aging. 2009 Dec;30(12):1895-901
21280088 - Ann Neurol. 2011 Jan;69(1):181-92
17568013 - Neurology. 2007 Dec 11;69(24):2197-204
15037694 - Neurology. 2004 Mar 23;62(6):925-31
16306244 - J Geriatr Psychiatry Neurol. 2005 Dec;18(4):224-7
20935035 - Brain. 2010 Nov;133(11):3336-48
15598922 - JAMA. 2004 Dec 15;292(23):2901-8
19743450 - Ann Neurol. 2009 Aug;66(2):200-8
20373342 - Ann Neurol. 2010 Mar;67(3):308-16
19339253 - Brain. 2009 May;132(Pt 5):1355-65
20147655 - Neurology. 2010 Mar 9;74(10):807-15
18259084 - Neuroepidemiology. 2008;30(1):58-69
16801647 - Neurology. 2006 Jun 27;66(12):1837-44
References_xml – reference: Langa KM, Foster NL, Larson EB. Mixed dementia: emerging concepts and therapeutic implications. JAMA 2004; 292: 2901-2908.
– reference: Chiang GC, Insel PS, Tosun D, et al. Identifying cognitively healthy elderly individuals with subsequent memory decline by using automated MR temporoparietal volumes. Radiology 2011; 259: 844-851.
– reference: Chen K, Ayutyanont N, Langbaum JB, et al. Characterizing Alzheimer's disease using a hypometabolic convergence index. Neuroimage 2011; 56: 52-60.
– reference: Bennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006; 66: 1837-1844.
– reference: Lopresti BJ, Klunk WE, Mathis CA, et al. Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 2005; 46: 1959-1972.
– reference: Morris JC, Roe CM, Grant EA, et al. Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch Neurol 2009; 66: 1469-1475.
– reference: Fagan AM, Head D, Shah AR, et al. Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Ann Neurol 2009; 65: 176-183.
– reference: Jack CR Jr, Wiste HJ, Vemuri P, et al. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease. Brain 2010; 133: 3336-3348.
– reference: Gunter JL, Bernstein MA, Borowski BJ, et al. Measurement of MRI scanner performance with the ADNI phantom. Med Phys 2009; 36: 2193-2205.
– reference: Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 2007; 69: 2197-2204.
– reference: Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann Neurol 2004; 55: 306-319.
– reference: Aizenstein HJ, Nebes RD, Saxton JA, et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 2008; 65: 1509-1517.
– reference: Resnick SM, Sojkova J, Zhou Y, et al. Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB. Neurology 2010; 74: 807-815.
– reference: Storandt M, Mintun MA, Head D, Morris JC. Cognitive decline and brain volume loss as signatures of cerebral amyloid-beta peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Abeta deposition. Arch Neurol 2009; 66: 1476-1481.
– reference: Lowe VJ, Kemp BJ, Jack CR Jr, et al. Comparison of 18F-FDG and PiB PET in cognitive impairment. J Nucl Med 2009; 50: 878-886.
– reference: Villemagne VL, Pike KE, Chételat G, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol 2011; 69: 181-192.
– reference: Jack CR Jr, Lowe VJ, Weigand SD, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain 2009; 132( pt 5): 1355-1365.
– reference: Fischl B, Salat DH, Busa E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33: 341-355.
– reference: Mathis CA, Wang Y, Holt DP, et al. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 2003; 46: 2740-2754.
– reference: Schneider JA, Wilson RS, Bienias JL, et al. Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology. Neurology 2004; 62: 1148-1155.
– reference: Dickerson BC, Bakkour A, Salat DH, et al. The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex 2009; 19: 497-510.
– reference: Jack CR Jr, Lowe VJ, Senjem ML, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain 2008; 131( pt 3): 665-680.
– reference: Vemuri P, Wiste HJ, Weigand SD, et al. Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease. Ann Neurol 2010; 67: 308-316.
– reference: Rowe CC, Ng S, Ackermann U, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007; 68: 1718-1725.
– reference: Shaw LM, Vanderstichele H, Knapik-Czajka M, et al. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol 2009; 65: 403-413.
– reference: Becker JA, Hedden T, Carmasin J, et al. Amyloid-β associated cortical thinning in clinically normal elderly. Ann Neurol 2011; 69: 1032-1042.
– reference: Ingelsson M, Fukumoto H, Newell KL, et al. Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 2004; 62: 925-931.
– reference: Glasgow RE, Magid DJ, Beck A, et al. Practical clinical trials for translating research to practice: design and measurement recommendations. Med Care 2005; 43: 551-557.
– reference: Desikan RS, Sabuncu MR, Schmansky NJ, et al. Selective disruption of the cerebral neocortex in Alzheimer's disease. PLoS One 2010; 5: e12853.
– reference: Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature 2009; 461: 916-922.
– reference: Jack CR Jr, Twomey CK, Zinsmeister AR, et al. Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults. Radiology 1989; 172: 549-554.
– reference: Jagust WJ, Bandy D, Chen K, et al. The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core. Alzheimers Dement 2010; 6: 221-229.
– reference: Dickerson BC, Stoub TR, Shah RC, et al. Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 2011; 76: 1395-1402.
– reference: Petrovitch H, Ross GW, Steinhorn SC, et al. AD lesions and infarcts in demented and non-demented Japanese-American men. Ann Neurol 2005; 57: 98-103.
– reference: Jack CR Jr, Bernstein MA, Borowski BJ, et al. Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative. Alzheimers Dement 2010; 6: 212-220.
– reference: Knopman DS, Parisi JE, Salviati A, et al. Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 2003; 62: 1087-1095.
– reference: Mormino EC, Kluth JT, Madison CM, et al. Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain 2009; 132( pt 5): 1310-1323.
– reference: Price JC, Klunk WE, Lopresti BJ, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh compound-B. J Cereb Blood Flow Metab 2005; 25: 1528-1547.
– reference: Albert MS, Moss MB, Tanzi R, Jones K. Preclinical prediction of AD using neuropsychological tests. J Int Neuropsychol Soc 2001; 7: 631-639.
– reference: Roberts RO, Geda YE, Knopman DS, et al. The Mayo Clinic Study of Aging: design and sampling, participation, baseline measures and sample characteristics. Neuroepidemiology 2008; 30: 58-69.
– reference: Tunis SR, Stryer DB, Clancy CM. Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy. JAMA 2003; 290: 1624-1632.
– reference: Rentz DM, Locascio JJ, Becker JA, et al. Cognition, reserve, and amyloid deposition in normal aging. Ann Neurol 2010; 67: 353-364.
– reference: Schneider JA, Aggarwal NT, Barnes L, et al. The neuropathology of older persons with and without dementia from community versus clinic cohorts. J Alzheimers Dis 2009; 18: 691-701.
– reference: Craft S. The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch Neurol 2009; 66: 300-305.
– reference: Sonnen JA, Larson EB, Crane PK, et al. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann Neurol 2007; 62: 406-413.
– reference: Landau SM, Harvey D, Madison CM, et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 2010; 75: 230-238.
– reference: Vemuri P, Gunter JL, Senjem ML, et al. Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage 2008; 39: 1186-1197.
– reference: Petersen RC, Roberts RO, Knopman DS, et al. Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging. Neurology 2010; 75: 889-897.
– reference: Whitwell JL, Josephs KA, Murray ME, et al. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology 2008; 71: 743-749.
– reference: Lo RY, Hubbard AE, Shaw LM, et al. Longitudinal change of biomarkers in cognitive decline. Arch Neurol 2011; 68: 1257-1266.
– reference: Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol 2009; 66: 200-208.
– reference: Rowe CC, Ellis KA, Rimajova M, et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 2010; 31: 1275-1283.
– reference: Bouwman FH, Schoonenboom NS, Verwey NA, et al. CSF biomarker levels in early and late onset Alzheimer's disease. Neurobiol Aging 2009; 30: 1895-1901.
– reference: White L, Small BJ, Petrovitch H, et al. Recent clinical-pathologic research on the causes of dementia in late life: update from the Honolulu-Asia Aging Study. J Geriatr Psychiatry Neurol 2005; 18: 224-227.
– reference: Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011; 7: 280-292.
– reference: Peskind ER, Li G, Shofer J, et al. Age and apolipoprotein E*4 allele effects on cerebrospinal fluid beta-amyloid 42 in adults with normal cognition. Arch Neurol 2006; 63: 936-939.
– reference: Vemuri P, Wiste HJ, Weigand SD, et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 2009; 73: 287-293.
– reference: Schott JM, Bartlett JW, Fox NC, et al. Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Abeta1-42. Ann Neurol 2010; 68: 825-834.
– reference: Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 2010; 9: 119-128.
– reference: Schuff N, Woerner N, Boreta L, et al. MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers. Brain 2009; 132( pt 4): 1067-1077.
– reference: Price JL, Morris JC. Tangles and plaques in nondemented aging and "preclinical" Alzheimer's disease. Ann Neurol 1999; 45: 358-368.
– reference: Reiman EM, Caselli RJ, Yun LS, et al. Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 1996; 334: 752-758.
– reference: Reed BR, Mungas D, Farias ST, et al. Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain 2010; 133( pt 8): 2196-2209.
– reference: Mintun MA, Larossa GN, Sheline YI, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006; 67: 446-452.
– reference: Schmitt FA, Davis DG, Wekstein DR, et al. "Preclinical" AD revisited: neuropathology of cognitively normal older adults. Neurology 2000; 55: 370-376.
– reference: Pike KE, Ellis KA, Villemagne VL, et al. Cognition and beta-amyloid in preclinical Alzheimer's disease: data from the AIBL study. Neuropsychologia 2011; 49: 2384-2390.
– reference: Stomrud E, Hansson O, Zetterberg H, et al. Correlation of longitudinal cerebrospinal fluid biomarkers with cognitive decline in healthy older adults. Arch Neurol 2010; 67: 217-223.
– reference: Moffat SD, Szekely CA, Zonderman AB, et al. Longitudinal change in hippocampal volume as a function of apolipoprotein E genotype. Neurology 2000; 55: 134-136.
– reference: Fagan AM, Mintun MA, Shah AR, et al. Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer's disease. EMBO Mol Med 2009; 1: 371-380.
– reference: McNamee RL, Yee SH, Price JC, et al. Consideration of optimal time window for Pittsburgh compound B PET summed uptake measurements. J Nucl Med 2009; 50: 348-355.
– reference: Vemuri P, Whitwell JL, Kantarci K, et al. Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage. Neuroimage 2008; 42: 559-567.
– volume: 66
  start-page: 1837
  year: 2006
  end-page: 1844
  article-title: Neuropathology of older persons without cognitive impairment from two community‐based studies
  publication-title: Neurology
– volume: 67
  start-page: 308
  year: 2010
  end-page: 316
  article-title: Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease
  publication-title: Ann Neurol
– volume: 259
  start-page: 844
  year: 2011
  end-page: 851
  article-title: Identifying cognitively healthy elderly individuals with subsequent memory decline by using automated MR temporoparietal volumes
  publication-title: Radiology
– year: 2009
– volume: 133
  start-page: 2196
  issue: pt 8
  year: 2010
  end-page: 2209
  article-title: Measuring cognitive reserve based on the decomposition of episodic memory variance
  publication-title: Brain
– volume: 65
  start-page: 403
  year: 2009
  end-page: 413
  article-title: Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects
  publication-title: Ann Neurol
– volume: 132
  start-page: 1310
  issue: pt 5
  year: 2009
  end-page: 1323
  article-title: Episodic memory loss is related to hippocampal‐mediated beta‐amyloid deposition in elderly subjects
  publication-title: Brain
– volume: 69
  start-page: 2197
  year: 2007
  end-page: 2204
  article-title: Mixed brain pathologies account for most dementia cases in community‐dwelling older persons
  publication-title: Neurology
– volume: 66
  start-page: 1476
  year: 2009
  end-page: 1481
  article-title: Cognitive decline and brain volume loss as signatures of cerebral amyloid‐beta peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Abeta deposition
  publication-title: Arch Neurol
– volume: 36
  start-page: 2193
  year: 2009
  end-page: 2205
  article-title: Measurement of MRI scanner performance with the ADNI phantom
  publication-title: Med Phys
– volume: 67
  start-page: 217
  year: 2010
  end-page: 223
  article-title: Correlation of longitudinal cerebrospinal fluid biomarkers with cognitive decline in healthy older adults
  publication-title: Arch Neurol
– volume: 30
  start-page: 1895
  year: 2009
  end-page: 1901
  article-title: CSF biomarker levels in early and late onset Alzheimer's disease
  publication-title: Neurobiol Aging
– volume: 133
  start-page: 3336
  year: 2010
  end-page: 3348
  article-title: Brain beta‐amyloid measures and magnetic resonance imaging atrophy both predict time‐to‐progression from mild cognitive impairment to Alzheimer's disease
  publication-title: Brain
– volume: 172
  start-page: 549
  year: 1989
  end-page: 554
  article-title: Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults
  publication-title: Radiology
– volume: 63
  start-page: 936
  year: 2006
  end-page: 939
  article-title: Age and apolipoprotein E*4 allele effects on cerebrospinal fluid beta‐amyloid 42 in adults with normal cognition
  publication-title: Arch Neurol
– volume: 132
  start-page: 1355
  issue: pt 5
  year: 2009
  end-page: 1365
  article-title: Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease
  publication-title: Brain
– volume: 46
  start-page: 2740
  year: 2003
  end-page: 2754
  article-title: Synthesis and evaluation of 11C‐labeled 6‐substituted 2‐arylbenzothiazoles as amyloid imaging agents
  publication-title: J Med Chem
– volume: 33
  start-page: 341
  year: 2002
  end-page: 355
  article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain
  publication-title: Neuron
– volume: 62
  start-page: 925
  year: 2004
  end-page: 931
  article-title: Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain
  publication-title: Neurology
– volume: 66
  start-page: 1469
  year: 2009
  end-page: 1475
  article-title: Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease
  publication-title: Arch Neurol
– volume: 25
  start-page: 1528
  year: 2005
  end-page: 1547
  article-title: Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh compound‐B
  publication-title: J Cereb Blood Flow Metab
– volume: 461
  start-page: 916
  year: 2009
  end-page: 922
  article-title: Multimodal techniques for diagnosis and prognosis of Alzheimer's disease
  publication-title: Nature
– volume: 62
  start-page: 1148
  year: 2004
  end-page: 1155
  article-title: Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology
  publication-title: Neurology
– volume: 30
  start-page: 58
  year: 2008
  end-page: 69
  article-title: The Mayo Clinic Study of Aging: design and sampling, participation, baseline measures and sample characteristics
  publication-title: Neuroepidemiology
– volume: 74
  start-page: 807
  year: 2010
  end-page: 815
  article-title: Longitudinal cognitive decline is associated with fibrillar amyloid‐beta measured by [11C]PiB
  publication-title: Neurology
– volume: 67
  start-page: 446
  year: 2006
  end-page: 452
  article-title: [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease
  publication-title: Neurology
– volume: 50
  start-page: 348
  year: 2009
  end-page: 355
  article-title: Consideration of optimal time window for Pittsburgh compound B PET summed uptake measurements
  publication-title: J Nucl Med
– volume: 6
  start-page: 212
  year: 2010
  end-page: 220
  article-title: Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative
  publication-title: Alzheimers Dement
– volume: 69
  start-page: 181
  year: 2011
  end-page: 192
  article-title: Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease
  publication-title: Ann Neurol
– volume: 5
  start-page: e12853
  year: 2010
  article-title: Selective disruption of the cerebral neocortex in Alzheimer's disease
  publication-title: PLoS One
– volume: 132
  start-page: 1067
  issue: pt 4
  year: 2009
  end-page: 1077
  article-title: MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers
  publication-title: Brain
– volume: 45
  start-page: 358
  year: 1999
  end-page: 368
  article-title: Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease
  publication-title: Ann Neurol
– volume: 76
  start-page: 1395
  year: 2011
  end-page: 1402
  article-title: Alzheimer‐signature MRI biomarker predicts AD dementia in cognitively normal adults
  publication-title: Neurology
– volume: 69
  start-page: 1032
  year: 2011
  end-page: 1042
  article-title: Amyloid‐β associated cortical thinning in clinically normal elderly
  publication-title: Ann Neurol
– volume: 66
  start-page: 300
  year: 2009
  end-page: 305
  article-title: The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged
  publication-title: Arch Neurol
– volume: 68
  start-page: 1718
  year: 2007
  end-page: 1725
  article-title: Imaging beta‐amyloid burden in aging and dementia
  publication-title: Neurology
– volume: 67
  start-page: 353
  year: 2010
  end-page: 364
  article-title: Cognition, reserve, and amyloid deposition in normal aging
  publication-title: Ann Neurol
– volume: 62
  start-page: 1087
  year: 2003
  end-page: 1095
  article-title: Neuropathology of cognitively normal elderly
  publication-title: J Neuropathol Exp Neurol
– volume: 43
  start-page: 551
  year: 2005
  end-page: 557
  article-title: Practical clinical trials for translating research to practice: design and measurement recommendations
  publication-title: Med Care
– volume: 75
  start-page: 230
  year: 2010
  end-page: 238
  article-title: Comparing predictors of conversion and decline in mild cognitive impairment
  publication-title: Neurology
– volume: 68
  start-page: 825
  year: 2010
  end-page: 834
  article-title: Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Abeta1–42
  publication-title: Ann Neurol
– volume: 6
  start-page: 221
  year: 2010
  end-page: 229
  article-title: The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core
  publication-title: Alzheimers Dement
– volume: 7
  start-page: 280
  year: 2011
  end-page: 292
  article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
– volume: 71
  start-page: 743
  year: 2008
  end-page: 749
  article-title: MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel‐based morphometry study
  publication-title: Neurology
– volume: 7
  start-page: 631
  year: 2001
  end-page: 639
  article-title: Preclinical prediction of AD using neuropsychological tests
  publication-title: J Int Neuropsychol Soc
– volume: 292
  start-page: 2901
  year: 2004
  end-page: 2908
  article-title: Mixed dementia: emerging concepts and therapeutic implications
  publication-title: JAMA
– volume: 290
  start-page: 1624
  year: 2003
  end-page: 1632
  article-title: Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy
  publication-title: JAMA
– volume: 55
  start-page: 370
  year: 2000
  end-page: 376
  article-title: “Preclinical” AD revisited: neuropathology of cognitively normal older adults
  publication-title: Neurology
– volume: 57
  start-page: 98
  year: 2005
  end-page: 103
  article-title: AD lesions and infarcts in demented and non‐demented Japanese‐American men
  publication-title: Ann Neurol
– volume: 65
  start-page: 1509
  year: 2008
  end-page: 1517
  article-title: Frequent amyloid deposition without significant cognitive impairment among the elderly
  publication-title: Arch Neurol
– volume: 75
  start-page: 889
  year: 2010
  end-page: 897
  article-title: Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging
  publication-title: Neurology
– volume: 18
  start-page: 691
  year: 2009
  end-page: 701
  article-title: The neuropathology of older persons with and without dementia from community versus clinic cohorts
  publication-title: J Alzheimers Dis
– volume: 55
  start-page: 306
  year: 2004
  end-page: 319
  article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound‐B
  publication-title: Ann Neurol
– volume: 42
  start-page: 559
  year: 2008
  end-page: 567
  article-title: Antemortem MRI based STructural Abnormality iNDex (STAND)‐scores correlate with postmortem Braak neurofibrillary tangle stage
  publication-title: Neuroimage
– volume: 46
  start-page: 1959
  year: 2005
  end-page: 1972
  article-title: Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis
  publication-title: J Nucl Med
– volume: 334
  start-page: 752
  year: 1996
  end-page: 758
  article-title: Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E
  publication-title: N Engl J Med
– volume: 9
  start-page: 119
  year: 2010
  end-page: 128
  article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade
  publication-title: Lancet Neurol
– volume: 19
  start-page: 497
  year: 2009
  end-page: 510
  article-title: The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid‐positive individuals
  publication-title: Cereb Cortex
– volume: 131
  start-page: 665
  issue: pt 3
  year: 2008
  end-page: 680
  article-title: 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment
  publication-title: Brain
– volume: 50
  start-page: 878
  year: 2009
  end-page: 886
  article-title: Comparison of 18F‐FDG and PiB PET in cognitive impairment
  publication-title: J Nucl Med
– volume: 31
  start-page: 1275
  year: 2010
  end-page: 1283
  article-title: Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging
  publication-title: Neurobiol Aging
– volume: 56
  start-page: 52
  year: 2011
  end-page: 60
  article-title: Characterizing Alzheimer's disease using a hypometabolic convergence index
  publication-title: Neuroimage
– volume: 65
  start-page: 176
  year: 2009
  end-page: 183
  article-title: Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly
  publication-title: Ann Neurol
– volume: 1
  start-page: 371
  year: 2009
  end-page: 380
  article-title: Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer's disease
  publication-title: EMBO Mol Med
– volume: 49
  start-page: 2384
  year: 2011
  end-page: 2390
  article-title: Cognition and beta‐amyloid in preclinical Alzheimer's disease: data from the AIBL study
  publication-title: Neuropsychologia
– volume: 55
  start-page: 134
  year: 2000
  end-page: 136
  article-title: Longitudinal change in hippocampal volume as a function of apolipoprotein E genotype
  publication-title: Neurology
– volume: 62
  start-page: 406
  year: 2007
  end-page: 413
  article-title: Pathological correlates of dementia in a longitudinal, population‐based sample of aging
  publication-title: Ann Neurol
– volume: 18
  start-page: 224
  year: 2005
  end-page: 227
  article-title: Recent clinical‐pathologic research on the causes of dementia in late life: update from the Honolulu‐Asia Aging Study
  publication-title: J Geriatr Psychiatry Neurol
– volume: 68
  start-page: 1257
  year: 2011
  end-page: 1266
  article-title: Longitudinal change of biomarkers in cognitive decline
  publication-title: Arch Neurol
– volume: 66
  start-page: 200
  year: 2009
  end-page: 208
  article-title: The neuropathology of probable Alzheimer disease and mild cognitive impairment
  publication-title: Ann Neurol
– volume: 39
  start-page: 1186
  year: 2008
  end-page: 1197
  article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies
  publication-title: Neuroimage
– volume: 73
  start-page: 287
  year: 2009
  end-page: 293
  article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations
  publication-title: Neurology
– ident: e_1_2_7_17_2
  doi: 10.2967/jnumed.108.057612
– ident: e_1_2_7_48_2
  doi: 10.1212/WNL.0b013e3181af79e5
– ident: e_1_2_7_72_2
  doi: 10.1097/01.mlr.0000163645.41407.09
– ident: e_1_2_7_37_2
  doi: 10.1002/ana.21904
– ident: e_1_2_7_3_2
  doi: 10.1016/S1474-4422(09)70299-6
– ident: e_1_2_7_20_2
  doi: 10.1212/WNL.0b013e3181e8e8b8
– ident: e_1_2_7_33_2
  doi: 10.1001/archneur.65.11.1509
– ident: e_1_2_7_14_2
  doi: 10.1148/radiology.172.2.2748838
– ident: e_1_2_7_69_2
  doi: 10.1017/S1355617701755105
– ident: e_1_2_7_29_2
  doi: 10.3233/JAD-2009-1227
– ident: e_1_2_7_56_2
  doi: 10.1212/WNL.55.1.134
– ident: e_1_2_7_7_2
  doi: 10.1093/brain/awp062
– ident: e_1_2_7_11_2
  doi: 10.1118/1.3116776
– ident: e_1_2_7_15_2
  doi: 10.1021/jm030026b
– ident: e_1_2_7_27_2
  doi: 10.1212/01.wnl.0000219668.47116.e6
– ident: e_1_2_7_66_2
  doi: 10.1093/brain/awq277
– ident: e_1_2_7_40_2
  doi: 10.1002/ana.22248
– ident: e_1_2_7_45_2
  doi: 10.1001/archneurol.2009.316
– ident: e_1_2_7_39_2
  doi: 10.1016/j.neuropsychologia.2011.04.012
– ident: e_1_2_7_59_2
  doi: 10.1212/01.wnl.0000271090.28148.24
– ident: e_1_2_7_49_2
  doi: 10.1002/ana.21953
– ident: e_1_2_7_61_2
  doi: 10.1002/ana.20318
– ident: e_1_2_7_67_2
  doi: 10.1016/j.neuroimage.2007.09.073
– ident: e_1_2_7_26_2
  doi: 10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X
– ident: e_1_2_7_9_2
  doi: 10.1212/WNL.0b013e3181f11d85
– ident: e_1_2_7_28_2
  doi: 10.1212/WNL.55.3.370
– ident: e_1_2_7_50_2
  doi: 10.1093/cercor/bhn113
– ident: e_1_2_7_13_2
  doi: 10.1016/S0896-6273(02)00569-X
– ident: e_1_2_7_10_2
  doi: 10.1016/j.jalz.2010.03.004
– ident: e_1_2_7_46_2
  doi: 10.1002/ana.22315
– ident: e_1_2_7_43_2
  doi: 10.1001/archneur.63.7.936
– ident: e_1_2_7_18_2
  doi: 10.1093/brain/awm336
– ident: e_1_2_7_36_2
  doi: 10.1212/WNL.0b013e3181d3e3e9
– ident: e_1_2_7_34_2
  doi: 10.2967/jnumed.108.058529
– ident: e_1_2_7_4_2
  doi: 10.1212/01.WNL.0000115115.98960.37
– ident: e_1_2_7_24_2
  doi: 10.1212/01.wnl.0000261919.22630.ea
– ident: e_1_2_7_60_2
  doi: 10.1212/01.WNL.0000118211.78503.F5
– ident: e_1_2_7_64_2
  doi: 10.1001/jama.292.23.2901
– ident: e_1_2_7_47_2
  doi: 10.1002/ana.21559
– ident: e_1_2_7_53_2
  doi: 10.1002/ana.22333
– ident: e_1_2_7_65_2
  doi: 10.1001/archneurol.2009.27
– ident: e_1_2_7_73_2
  doi: 10.1001/jama.290.12.1624
– ident: e_1_2_7_21_2
  doi: 10.1002/ana.21610
– ident: e_1_2_7_62_2
  doi: 10.1177/0891988705281872
– volume: 46
  start-page: 1959
  year: 2005
  ident: e_1_2_7_19_2
  article-title: Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis
  publication-title: J Nucl Med
– ident: e_1_2_7_71_2
  doi: 10.1093/brain/awq154
– ident: e_1_2_7_41_2
  doi: 10.1016/j.jalz.2010.03.003
– ident: e_1_2_7_2_2
  doi: 10.1016/j.jalz.2011.03.003
– ident: e_1_2_7_55_2
  doi: 10.1148/radiol.11101637
– ident: e_1_2_7_23_2
  doi: 10.1212/01.wnl.0000324924.91351.7d
– ident: e_1_2_7_51_2
  doi: 10.1002/emmm.200900048
– ident: e_1_2_7_12_2
– ident: e_1_2_7_63_2
  doi: 10.1002/ana.21706
– ident: e_1_2_7_6_2
  doi: 10.1038/nature08538
– ident: e_1_2_7_54_2
  doi: 10.1371/journal.pone.0012853
– ident: e_1_2_7_5_2
  doi: 10.1093/brain/awn320
– ident: e_1_2_7_25_2
  doi: 10.1093/jnen/62.11.1087
– ident: e_1_2_7_52_2
  doi: 10.1212/WNL.0b013e3182166e96
– ident: e_1_2_7_32_2
  doi: 10.1016/j.neurobiolaging.2010.04.007
– volume: 132
  start-page: 1067
  issue: 4
  year: 2009
  ident: e_1_2_7_57_2
  article-title: MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers
  publication-title: Brain
  doi: 10.1093/brain/awp007
– ident: e_1_2_7_70_2
  doi: 10.1001/archneurol.2009.272
– ident: e_1_2_7_30_2
  doi: 10.1002/ana.20009
– ident: e_1_2_7_31_2
  doi: 10.1212/01.wnl.0000228230.26044.a4
– ident: e_1_2_7_8_2
  doi: 10.1159/000115751
– ident: e_1_2_7_16_2
  doi: 10.1038/sj.jcbfm.9600146
– ident: e_1_2_7_42_2
  doi: 10.1056/NEJM199603213341202
– ident: e_1_2_7_22_2
  doi: 10.1016/j.neuroimage.2008.05.012
– ident: e_1_2_7_38_2
  doi: 10.1001/archneurol.2009.269
– ident: e_1_2_7_58_2
  doi: 10.1002/ana.21208
– ident: e_1_2_7_35_2
  doi: 10.1001/archneurol.2011.123
– ident: e_1_2_7_44_2
  doi: 10.1016/j.neurobiolaging.2008.02.007
– ident: e_1_2_7_68_2
  doi: 10.1016/j.neuroimage.2011.01.049
– reference: 18403055 - Neurobiol Aging. 2009 Dec;30(12):1895-901
– reference: 15037694 - Neurology. 2004 Mar 23;62(6):925-31
– reference: 17502554 - Neurology. 2007 May 15;68(20):1718-25
– reference: 21514248 - Alzheimers Dement. 2011 May;7(3):280-92
– reference: 18259084 - Neuroepidemiology. 2008;30(1):58-69
– reference: 19042931 - Brain. 2009 May;132(Pt 5):1310-23
– reference: 19829371 - Nature. 2009 Oct 15;461(7266):916-22
– reference: 20083042 - Lancet Neurol. 2010 Jan;9(1):119-28
– reference: 21181717 - Ann Neurol. 2010 Dec;68(6):825-34
– reference: 21437929 - Ann Neurol. 2011 Jun;69(6):1032-42
– reference: 11832223 - Neuron. 2002 Jan 31;33(3):341-55
– reference: 15944649 - J Cereb Blood Flow Metab. 2005 Nov;25(11):1528-47
– reference: 19251758 - Brain. 2009 Apr;132(Pt 4):1067-77
– reference: 18263627 - Brain. 2008 Mar;131(Pt 3):665-80
– reference: 20008651 - Arch Neurol. 2009 Dec;66(12):1476-81
– reference: 20142530 - Arch Neurol. 2010 Feb;67(2):217-23
– reference: 15562458 - Ann Neurol. 2005 Jan;57(1):98-103
– reference: 19339253 - Brain. 2009 May;132(Pt 5):1355-65
– reference: 12801237 - J Med Chem. 2003 Jun 19;46(13):2740-54
– reference: 15598922 - JAMA. 2004 Dec 15;292(23):2901-8
– reference: 20592257 - Neurology. 2010 Jul 20;75(3):230-8
– reference: 17568013 - Neurology. 2007 Dec 11;69(24):2197-204
– reference: 20373347 - Ann Neurol. 2010 Mar;67(3):353-64
– reference: 20451870 - Alzheimers Dement. 2010 May;6(3):221-9
– reference: 14506122 - JAMA. 2003 Sep 24;290(12):1624-32
– reference: 21276856 - Neuroimage. 2011 May 1;56(1):52-60
– reference: 16801647 - Neurology. 2006 Jun 27;66(12):1837-44
– reference: 20451869 - Alzheimers Dement. 2010 May;6(3):212-20
– reference: 18632739 - Cereb Cortex. 2009 Mar;19(3):497-510
– reference: 19296504 - Ann Neurol. 2009 Apr;65(4):403-13
– reference: 10891924 - Neurology. 2000 Jul 12;55(1):134-6
– reference: 21490323 - Neurology. 2011 Apr 19;76(16):1395-402
– reference: 19260027 - Ann Neurol. 2009 Feb;65(2):176-83
– reference: 19743450 - Ann Neurol. 2009 Aug;66(2):200-8
– reference: 20820000 - Neurology. 2010 Sep 7;75(10):889-97
– reference: 11459114 - J Int Neuropsychol Soc. 2001 Jul;7(5):631-9
– reference: 18572417 - Neuroimage. 2008 Aug 15;42(2):559-67
– reference: 15908849 - Med Care. 2005 Jun;43(6):551-7
– reference: 18765650 - Neurology. 2008 Sep 2;71(10):743-9
– reference: 16894106 - Neurology. 2006 Aug 8;67(3):446-52
– reference: 16306244 - J Geriatr Psychiatry Neurol. 2005 Dec;18(4):224-7
– reference: 20935035 - Brain. 2010 Nov;133(11):3336-48
– reference: 17879383 - Ann Neurol. 2007 Oct;62(4):406-13
– reference: 21670386 - Arch Neurol. 2011 Oct;68(10):1257-66
– reference: 16831961 - Arch Neurol. 2006 Jul;63(7):936-9
– reference: 19223409 - J Nucl Med. 2009 Mar;50(3):348-55
– reference: 18054253 - Neuroimage. 2008 Feb 1;39(3):1186-97
– reference: 14656067 - J Neuropathol Exp Neurol. 2003 Nov;62(11):1087-95
– reference: 20886094 - PLoS One. 2010;5(9):e12853
– reference: 21529702 - Neuropsychologia. 2011 Jul;49(9):2384-90
– reference: 19273747 - Arch Neurol. 2009 Mar;66(3):300-5
– reference: 20008650 - Arch Neurol. 2009 Dec;66(12):1469-75
– reference: 19749406 - J Alzheimers Dis. 2009;18(3):691-701
– reference: 14991808 - Ann Neurol. 2004 Mar;55(3):306-19
– reference: 21467255 - Radiology. 2011 Jun;259(3):844-51
– reference: 20049742 - EMBO Mol Med. 2009 Nov;1(8-9):371-80
– reference: 20472326 - Neurobiol Aging. 2010 Aug;31(8):1275-83
– reference: 20373342 - Ann Neurol. 2010 Mar;67(3):308-16
– reference: 15079015 - Neurology. 2004 Apr 13;62(7):1148-55
– reference: 16330558 - J Nucl Med. 2005 Dec;46(12):1959-72
– reference: 20147655 - Neurology. 2010 Mar 9;74(10):807-15
– reference: 19610308 - Med Phys. 2009 Jun;36(6):2193-205
– reference: 8592548 - N Engl J Med. 1996 Mar 21;334(12):752-8
– reference: 10072051 - Ann Neurol. 1999 Mar;45(3):358-68
– reference: 21280088 - Ann Neurol. 2011 Jan;69(1):181-92
– reference: 10932270 - Neurology. 2000 Aug 8;55(3):370-6
– reference: 20591858 - Brain. 2010 Aug;133(Pt 8):2196-209
– reference: 19443597 - J Nucl Med. 2009 Jun;50(6):878-86
– reference: 2748838 - Radiology. 1989 Aug;172(2):549-54
– reference: 19001171 - Arch Neurol. 2008 Nov;65(11):1509-17
– reference: 19636048 - Neurology. 2009 Jul 28;73(4):287-93
SSID ssj0009610
Score 2.574018
Snippet Objective: A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for...
A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical...
Objective: A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 765
SubjectTerms Aged
Aged, 80 and over
Alzheimer Disease - diagnosis
Aniline Compounds - standards
Biological and medical sciences
Biomarkers
Brain - diagnostic imaging
Cognition Disorders - diagnosis
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Disease Progression
Female
Fluorodeoxyglucose F18 - standards
Humans
Longitudinal Studies
Male
Medical sciences
Mental Status Schedule
National Institute on Aging (U.S.) - standards
Neurodegeneration
Neurology
Neuropsychological Tests
Positron-Emission Tomography
Thiazoles - standards
United States
Title An operational approach to National Institute on Aging-Alzheimer's Association criteria for preclinical Alzheimer disease
URI https://api.istex.fr/ark:/67375/WNG-TSB25X3M-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.22628
https://www.ncbi.nlm.nih.gov/pubmed/22488240
https://www.proquest.com/docview/1516475749
https://www.proquest.com/docview/1021980786
https://www.proquest.com/docview/1520379720
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEG6WFcSLb93ourQiupfMJp1-pPEUF9dFmDnoLs5BaLqTDsquyTAPkPXif_Af-kusymscWUW8DZlqkq5UVb6kqr4i5CkXVvkCHMmmmoVcMB5aJ5OwUGUitSvBAbF3eDyRx6f8zVRMt8iLvhem5YcYPrihZzTxGh3cusXBmjTUVnYE2IFhoy_WaiEgerumjtKyYSLANFso4oT3rEIROxhWbjyLrqBav2BtpF2Aesp2rsVlwHMTxzYPoqMb5EO_hbb-5Gy0WrpRfvEbu-N_7vEmud4BVJq1FnWLbPnqNrk67lLwd8jXrKL1zM-7j4i0JyWny5pO-oNDCQKtK5rhHKQf375n5xcf_afPfv58QX-xCgpxCwmjLQX8TGcQgbtmTTosoF0a6S45PXp1cngcdhMcwlywKA0xqek4z1UqC1EqK7mDgIZsEY6zmFtdYg9EFKdOs0JIrzzPS2s1vAUKH5dxco9sV3XldwiF96AiLbjkUha80KWOEhs7KwuAhGWkWED2-3tp8o7eHKdsnJuWmJkZUKZplBmQJ4PorOX0uEzoWWMQg4Sdn2ERnBLm_eS1OXn3kolpMjaHAdnbsJhhAVL_w_aigOz2JmS6ALEwALQkV0JxHZDHw9_g2pivsZWvVyAD-EvjPAD5FxnQc6K0YnCa-615ri-AQXRmeAH7jZH9ebMmm2TNjwf_LvqQXAPwyNqyuV2yvZyv_CMAaEu313jiT2G0NUw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuvB-BUgxC0Eu2iePYscQlVJQFujnAVt0LspzEEaglWe1DQuXCf-Af8ksY57UsKghxizZjJZ6dmXz2jL8BeMJCLUyOjqQjSV0WUubqlAduLoqAy7RAB7Rnh0cJHx6xN5NwsgHPu7MwDT9Ev-FmPaOO19bB7Yb03oo1VJd6gOCBRhdgy3b0rhdU71bkUZLXXAQ20ebiXdbxCnl0rx-69jXasor9Yqsj9RwVVDSdLc6DnutItv4UHVyFD90kmgqUk8FykQ6ys9_4Hf93ltfgSotRSdwY1XXYMOUNuDhqs_A34WtckmpqZu0-Iul4ycmiIkn3Y1-FQKqSxLYV0o9v3-PTs4_m02czezYnvxgGwdBlOaM1QQhNphiE2_OapB9A2kzSLTg6eDneH7ptEwc3C6kXuTavmTKWiYjnYSE0ZynGNEsYkTLqMy0LewzC86NU0jzkRhiWFVpLXAiGxi_84DZsllVp7gLBpVAe5YwzznOWy0J6gfZTzXNEhYUnqAO73Z-pspbh3DbaOFUNNzNVqExVK9OBx73otKH1OE_oaW0RvYSendg6OBGq4-SVGr9_QcNJMFL7DuysmUw_wLL_4_Q8B7Y7G1JtjJgrxFqciVAw6cCj_jZ6t03Z6NJUS5RBCCZtSwD-FxnUcyCkoPiYO419rl6AYoCm9gV2ayv782RVnMT1xb1_F30Il4bj0aE6fJ28vQ-XEUvSpopuGzYXs6V5gHhtke7UbvkTlFo5Zw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZKK1W8cB-BUgxC0JdsE8dHLJ5Cy1KOjRC06j4gWU7sCNSSrPaQUHnhP_AP-SWMcy2LCkK8RclYiSczk8-Z8TcIPaJMC2vAkXQsiU8Zob7OeOQbUURcZgU4oNs7PEr5wRF9NWbjNfS02wvT8EP0P9ycZ9Tx2jn4xBS7S9JQXeoBYAcSX0AblAexM-n9d0vuKMlrKgKXZ_NZGNGOViggu_3QlY_RhtPrF1ccqWegn6JpbHEe8lwFsvWXaHgZfejm0BSgnAwW82yQn_1G7_ifk7yCLrUIFSeNSV1Fa7a8hjZHbQ7-OvqalLia2Gn7FxF3rOR4XuG0O9nXIOCqxIlrhPTj2_fk9Oyj_fTZTp_M8C9mgSFwOcZojQFA4wmE4Ha3Ju4H4DaPdAMdDZ8f7h34bQsHP2ckiH2X1cwozUXMDSuE5jSDiOboIjJKQqpl4TZBBGGcSWIYt8LSvNBawjKQ2bAIo5tovaxKexthWAiZ2FBOOTfUyEIGkQ4zzQ1gwiIQxEM73btUectv7tpsnKqGmZkoUKaqlemhh73opCH1OE_ocW0QvYSenrgqOMHUcfpCHb5_Rtg4Gqk9D22vWEw_wHH_w_QCD211JqTaCDFTgLQ4FUxQ6aEH_WXwbZew0aWtFiADAEy6hgD8LzKg50hIQeA2txrzXD4AgfBM3APs1Eb258mqJE3qgzv_Lnofbb7dH6o3L9PXd9FFAJKkKaHbQuvz6cLeA7A2z7Zrp_wJ3Qo4Hw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+operational+approach+to+National+Institute+on+Aging%E2%80%93Alzheimer%27s+Association+criteria+for+preclinical+Alzheimer+disease&rft.jtitle=Annals+of+neurology&rft.au=Jack%2C+Clifford+R.&rft.au=Knopman%2C+David+S.&rft.au=Weigand%2C+Stephen+D.&rft.au=Wiste%2C+Heather+J.&rft.date=2012-06-01&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=71&rft.issue=6&rft.spage=765&rft.epage=775&rft_id=info:doi/10.1002%2Fana.22628&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ana_22628
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon