An operational approach to National Institute on Aging-Alzheimer's Association criteria for preclinical Alzheimer disease
Objective: A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines. Methods: We employed Pittsburgh compound B po...
Saved in:
Published in | Annals of neurology Vol. 71; no. 6; pp. 765 - 775 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.06.2012
Wiley-Liss Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Objective:
A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines.
Methods:
We employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis, and 18fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cutpoints. A group of 450 cognitively normal (CN) subjects from a population‐based sample was used to develop cognitive cutpoints and to assess population frequencies of the different preclinical AD stages using different cutpoint criteria.
Results:
The new criteria subdivide the preclinical phase of AD into stages 1 to 3. To classify our CN subjects, 2 additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected non‐AD pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cutpoints corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0, 16% stage 1, 12 % stage 2, 3% stage 3, and 23% SNAP.
Interpretation:
This cross‐sectional evaluation of the NIA‐AA criteria for preclinical AD indicates that the 1–3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population‐based sample, leaving only 3% unclassified. Future longitudinal validation of the criteria will be important ANN NEUROL 2012; |
---|---|
AbstractList | A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines.OBJECTIVEA workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines.We employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis, and (18) fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cutpoints. A group of 450 cognitively normal (CN) subjects from a population-based sample was used to develop cognitive cutpoints and to assess population frequencies of the different preclinical AD stages using different cutpoint criteria.METHODSWe employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis, and (18) fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cutpoints. A group of 450 cognitively normal (CN) subjects from a population-based sample was used to develop cognitive cutpoints and to assess population frequencies of the different preclinical AD stages using different cutpoint criteria.The new criteria subdivide the preclinical phase of AD into stages 1 to 3. To classify our CN subjects, 2 additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected non-AD pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cutpoints corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0, 16% stage 1, 12 % stage 2, 3% stage 3, and 23% SNAP.RESULTSThe new criteria subdivide the preclinical phase of AD into stages 1 to 3. To classify our CN subjects, 2 additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected non-AD pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cutpoints corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0, 16% stage 1, 12 % stage 2, 3% stage 3, and 23% SNAP.This cross-sectional evaluation of the NIA-AA criteria for preclinical AD indicates that the 1-3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population-based sample, leaving only 3% unclassified. Future longitudinal validation of the criteria will be important.INTERPRETATIONThis cross-sectional evaluation of the NIA-AA criteria for preclinical AD indicates that the 1-3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population-based sample, leaving only 3% unclassified. Future longitudinal validation of the criteria will be important. Objective: A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines. Methods: We employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis, and super(18)fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cutpoints. A group of 450 cognitively normal (CN) subjects from a population-based sample was used to develop cognitive cutpoints and to assess population frequencies of the different preclinical AD stages using different cutpoint criteria. Results: The new criteria subdivide the preclinical phase of AD into stages 1 to 3. To classify our CN subjects, 2 additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected non-AD pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cutpoints corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0, 16% stage 1, 12 % stage 2, 3% stage 3, and 23% SNAP. Interpretation: This cross-sectional evaluation of the NIA-AA criteria for preclinical AD indicates that the 1-3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population-based sample, leaving only 3% unclassified. Future longitudinal validation of the criteria will be important ANN NEUROL 2012; Objective: A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines. Methods: We employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis, and 18fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cutpoints. A group of 450 cognitively normal (CN) subjects from a population‐based sample was used to develop cognitive cutpoints and to assess population frequencies of the different preclinical AD stages using different cutpoint criteria. Results: The new criteria subdivide the preclinical phase of AD into stages 1 to 3. To classify our CN subjects, 2 additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected non‐AD pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cutpoints corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0, 16% stage 1, 12 % stage 2, 3% stage 3, and 23% SNAP. Interpretation: This cross‐sectional evaluation of the NIA‐AA criteria for preclinical AD indicates that the 1–3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population‐based sample, leaving only 3% unclassified. Future longitudinal validation of the criteria will be important ANN NEUROL 2012; A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines. We employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis, and (18) fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cutpoints. A group of 450 cognitively normal (CN) subjects from a population-based sample was used to develop cognitive cutpoints and to assess population frequencies of the different preclinical AD stages using different cutpoint criteria. The new criteria subdivide the preclinical phase of AD into stages 1 to 3. To classify our CN subjects, 2 additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected non-AD pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cutpoints corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0, 16% stage 1, 12 % stage 2, 3% stage 3, and 23% SNAP. This cross-sectional evaluation of the NIA-AA criteria for preclinical AD indicates that the 1-3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population-based sample, leaving only 3% unclassified. Future longitudinal validation of the criteria will be important. Objective: A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical Alzheimer disease (AD). We performed a preliminary assessment of these guidelines. Methods: We employed Pittsburgh compound B positron emission tomography (PET) imaging as our biomarker of cerebral amyloidosis, and 18fluorodeoxyglucose PET imaging and hippocampal volume as biomarkers of neurodegeneration. A group of 42 clinically diagnosed AD subjects was used to create imaging biomarker cutpoints. A group of 450 cognitively normal (CN) subjects from a population-based sample was used to develop cognitive cutpoints and to assess population frequencies of the different preclinical AD stages using different cutpoint criteria. Results: The new criteria subdivide the preclinical phase of AD into stages 1 to 3. To classify our CN subjects, 2 additional categories were needed. Stage 0 denotes subjects with normal AD biomarkers and no evidence of subtle cognitive impairment. Suspected non-AD pathophysiology (SNAP) denotes subjects with normal amyloid PET imaging, but abnormal neurodegeneration biomarker studies. At fixed cutpoints corresponding to 90% sensitivity for diagnosing AD and the 10th percentile of CN cognitive scores, 43% of our sample was classified as stage 0, 16% stage 1, 12 % stage 2, 3% stage 3, and 23% SNAP. Interpretation: This cross-sectional evaluation of the NIA-AA criteria for preclinical AD indicates that the 1-3 staging criteria coupled with stage 0 and SNAP categories classify 97% of CN subjects from a population-based sample, leaving only 3% unclassified. Future longitudinal validation of the criteria will be important ANN NEUROL 2012; [PUBLICATION ABSTRACT] |
Author | Vemuri, Prashanthi Ivnik, Robert J. Gunter, Jeffrey L. Weigand, Stephen D. Lowe, Val Petersen, Ronald C. Wiste, Heather J. Boeve, Bradley F. Rocca, Walter A. Knopman, David S. Senjem, Matthew L. Kantarci, Kejal Roberts, Rosebud O. Jack Jr, Clifford R. |
Author_xml | – sequence: 1 givenname: Clifford R. surname: Jack Jr fullname: Jack Jr, Clifford R. email: jack.clifford@mayo.edu organization: Department of Radiology, Mayo Clinic and Foundation, Rochester, MN – sequence: 2 givenname: David S. surname: Knopman fullname: Knopman, David S. organization: Department of Neurology, Mayo Clinic and Foundation, Rochester, MN – sequence: 3 givenname: Stephen D. surname: Weigand fullname: Weigand, Stephen D. organization: Division of Biomedical Statistics and Informatics, Mayo Clinic and Foundation, Rochester, MN – sequence: 4 givenname: Heather J. surname: Wiste fullname: Wiste, Heather J. organization: Division of Biomedical Statistics and Informatics, Mayo Clinic and Foundation, Rochester, MN – sequence: 5 givenname: Prashanthi surname: Vemuri fullname: Vemuri, Prashanthi organization: Department of Radiology, Mayo Clinic and Foundation, Rochester, MN – sequence: 6 givenname: Val surname: Lowe fullname: Lowe, Val organization: Department of Radiology, Mayo Clinic and Foundation, Rochester, MN – sequence: 7 givenname: Kejal surname: Kantarci fullname: Kantarci, Kejal organization: Department of Radiology, Mayo Clinic and Foundation, Rochester, MN – sequence: 8 givenname: Jeffrey L. surname: Gunter fullname: Gunter, Jeffrey L. organization: Department of Radiology, Mayo Clinic and Foundation, Rochester, MN – sequence: 9 givenname: Matthew L. surname: Senjem fullname: Senjem, Matthew L. organization: Department of Radiology, Mayo Clinic and Foundation, Rochester, MN – sequence: 10 givenname: Robert J. surname: Ivnik fullname: Ivnik, Robert J. organization: Department of Psychiatry and Psychology, Mayo Clinic and Foundation, Rochester, MN – sequence: 11 givenname: Rosebud O. surname: Roberts fullname: Roberts, Rosebud O. organization: Mayo Clinic Alzheimer's Disease Research Center, Mayo Clinic and Foundation, Rochester, MN – sequence: 12 givenname: Walter A. surname: Rocca fullname: Rocca, Walter A. organization: Department of Neurology, Mayo Clinic and Foundation, Rochester, MN – sequence: 13 givenname: Bradley F. surname: Boeve fullname: Boeve, Bradley F. organization: Department of Neurology, Mayo Clinic and Foundation, Rochester, MN – sequence: 14 givenname: Ronald C. surname: Petersen fullname: Petersen, Ronald C. organization: Department of Neurology, Mayo Clinic and Foundation, Rochester, MN |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26006740$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22488240$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0k1v1DAQBmALFdFt4cAfQJYQAg5p_RU7OYYVlEplOVAEN8vxTlqXrB3srGD59Xg_kSoBl1iKnnecmcwJOvLBA0JPKTmjhLBz480ZY5JVD9CElpwWFRP1EZoQLkVRUi6O0UlKd4SQWlLyCB0zJqpsyAStGo_DANGMLnjTYzMMMRh7i8eAZ_uXlz6NblyOgIPHzY3zN0XT_7oFt4D4MuEmpWDdBmMb3QjRGdyFiIcItnfe2VzjEMBzl8AkeIwedqZP8GR3nqLP795eT98XVx8vLqfNVWFLRqpCVYK2QlhVyXnZKSNFy1XugvFWMCpM3UklOKFVW7N5KUGBsJ0xNavqEmhH-Sl6ta2bG_u-hDTqhUsW-t54CMukab6Gq1rl538pYbSuSP6UTJ_fo3dhGfOw1gWpFKpUos7q2U4t2wXM9RDdwsSV3s8_gxc7YFKeUheNty79cZKQ3N7avd46G0NKEboDoUSvd0DnHdCbHcj2_J61btz8nTEa1_8r8cP1sPp7ad3Mmn2i2CZcGuHnIWHiNy0VV6X-MrvQ15_esPIr_6Cn_DdLbc9C |
CODEN | ANNED3 |
CitedBy_id | crossref_primary_10_1212_WNL_0b013e31828728ac crossref_primary_10_1007_s11910_020_01063_1 crossref_primary_10_1212_WNL_0000000000003050 crossref_primary_10_1007_s00330_017_5103_6 crossref_primary_10_1016_j_jalz_2014_05_1754 crossref_primary_10_1212_WNL_0000000000005476 crossref_primary_10_12779_dnd_2024_23_4_212 crossref_primary_10_1093_brain_aww142 crossref_primary_10_1016_j_jbc_2021_101483 crossref_primary_10_1097_QAD_0000000000003556 crossref_primary_10_1002_hbm_26514 crossref_primary_10_2217_nmt_14_29 crossref_primary_10_1089_brain_2020_0808 crossref_primary_10_1177_0898264315577590 crossref_primary_10_1016_j_neurobiolaging_2017_06_022 crossref_primary_10_14283_jpad_2022_1 crossref_primary_10_1016_j_neurobiolaging_2015_10_025 crossref_primary_10_3389_fnagi_2022_857940 crossref_primary_10_1016_j_trac_2020_115919 crossref_primary_10_3233_JAD_170627 crossref_primary_10_3233_JAD_132474 crossref_primary_10_3233_JAD_151093 crossref_primary_10_1016_j_csbj_2022_08_007 crossref_primary_10_1016_j_neurobiolaging_2023_11_002 crossref_primary_10_1093_brain_awv283 crossref_primary_10_1093_brain_awv288 crossref_primary_10_1002_14651858_CD010775_pub2 crossref_primary_10_1002_14651858_CD010775_pub3 crossref_primary_10_1016_j_jalz_2017_05_002 crossref_primary_10_1093_arclin_acz019 crossref_primary_10_1007_s11910_014_0500_6 crossref_primary_10_1007_s00221_023_06618_5 crossref_primary_10_1016_j_ecoenv_2023_115565 crossref_primary_10_1371_journal_pone_0190478 crossref_primary_10_3233_JAD_221077 crossref_primary_10_1155_2017_5934254 crossref_primary_10_1016_j_jalz_2012_12_004 crossref_primary_10_1017_S1355617716000928 crossref_primary_10_1080_13554794_2019_1599026 crossref_primary_10_2196_62914 crossref_primary_10_1093_brain_awv199 crossref_primary_10_1016_j_dadm_2018_01_006 crossref_primary_10_1016_j_cpet_2013_08_001 crossref_primary_10_1038_mp_2016_206 crossref_primary_10_1097_WCO_0000000000000959 crossref_primary_10_3233_JAD_170960 crossref_primary_10_1093_arclin_acw083 crossref_primary_10_1007_s11307_017_1085_7 crossref_primary_10_1007_s00401_014_1362_3 crossref_primary_10_1038_nrneurol_2016_153 crossref_primary_10_1016_j_arr_2016_01_004 crossref_primary_10_1016_j_ccr_2016_03_001 crossref_primary_10_3233_JAD_180522 crossref_primary_10_3389_fnagi_2022_943380 crossref_primary_10_14283_jpad_2019_12 crossref_primary_10_2217_nmt_13_48 crossref_primary_10_1016_j_cpet_2013_08_002 crossref_primary_10_1038_nrneurol_2018_9 crossref_primary_10_1212_WNL_0000000000003371 crossref_primary_10_1016_j_trsl_2018_01_001 crossref_primary_10_1371_journal_pone_0053587 crossref_primary_10_1212_WNL_0000000000004344 crossref_primary_10_1212_WNL_0b013e31829a3329 crossref_primary_10_1016_j_nicl_2019_101765 crossref_primary_10_3389_fnagi_2020_550664 crossref_primary_10_1111_jgs_14670 crossref_primary_10_1016_j_nicl_2013_02_006 crossref_primary_10_1186_s13024_017_0162_3 crossref_primary_10_1016_j_clinph_2013_10_019 crossref_primary_10_1016_j_arr_2020_101126 crossref_primary_10_1016_j_neuron_2013_12_003 crossref_primary_10_1002_trc2_12005 crossref_primary_10_1016_S1474_4422_13_70044_9 crossref_primary_10_3233_JAD_190254 crossref_primary_10_1002_alz_12890 crossref_primary_10_1007_s00115_018_0488_2 crossref_primary_10_1016_j_pneurobio_2013_01_003 crossref_primary_10_1186_s13195_021_00799_3 crossref_primary_10_1016_j_arr_2017_02_003 crossref_primary_10_1080_14712598_2018_1389885 crossref_primary_10_1016_j_jalz_2018_07_215 crossref_primary_10_1210_clinem_dgaf026 crossref_primary_10_1002_dad2_12104 crossref_primary_10_1016_j_dadm_2016_05_001 crossref_primary_10_1016_j_jamda_2014_09_005 crossref_primary_10_1002_dad2_12102 crossref_primary_10_1016_S1474_4422_14_70194_2 crossref_primary_10_1212_WNL_0000000000003126 crossref_primary_10_3233_JAD_180229 crossref_primary_10_1016_j_dadm_2019_01_001 crossref_primary_10_1111_bpa_12812 crossref_primary_10_1016_j_neurobiolaging_2018_08_022 crossref_primary_10_1002_brb3_1016 crossref_primary_10_3233_JAD_150824 crossref_primary_10_1586_14737175_2014_945522 crossref_primary_10_1007_s40336_015_0110_6 crossref_primary_10_1016_j_neurobiolaging_2015_08_029 crossref_primary_10_1053_j_semnuclmed_2015_09_003 crossref_primary_10_3389_fnins_2023_1209378 crossref_primary_10_1016_j_neurobiolaging_2017_06_005 crossref_primary_10_3233_JAD_170521 crossref_primary_10_1186_s13195_018_0369_8 crossref_primary_10_1016_j_cortex_2017_09_018 crossref_primary_10_3233_JAD_150937 crossref_primary_10_3233_JAD_170887 crossref_primary_10_1021_acs_jproteome_5b00668 crossref_primary_10_1002_alz_13608 crossref_primary_10_1159_000439255 crossref_primary_10_3233_JAD_190367 crossref_primary_10_1021_cn500101j crossref_primary_10_1016_S1474_4422_15_00135_0 crossref_primary_10_1016_j_remn_2017_05_003 crossref_primary_10_1093_brain_awv029 crossref_primary_10_1016_j_jalz_2012_10_012 crossref_primary_10_1186_s13195_024_01629_y crossref_primary_10_3233_JAD_210556 crossref_primary_10_1016_j_jalz_2014_09_001 crossref_primary_10_1016_j_neulet_2021_136208 crossref_primary_10_1523_JNEUROSCI_2462_12_2012 crossref_primary_10_1038_s41467_024_47286_5 crossref_primary_10_1177_0271678X16654492 crossref_primary_10_1016_j_neurobiolaging_2016_10_013 crossref_primary_10_3389_fnagi_2015_00164 crossref_primary_10_1093_brain_awy049 crossref_primary_10_1016_j_neurobiolaging_2017_04_024 crossref_primary_10_1186_1471_2105_16_S7_S8 crossref_primary_10_1007_s12264_015_1546_4 crossref_primary_10_3233_JAD_170580 crossref_primary_10_1212_01_wnl_0000435556_21319_e4 crossref_primary_10_1007_s12170_014_0401_x crossref_primary_10_1016_j_cpet_2016_08_003 crossref_primary_10_1212_WNL_0000000000000170 crossref_primary_10_1080_17460441_2024_2348142 crossref_primary_10_1212_WNL_0000000000004652 crossref_primary_10_1007_s00259_023_06440_9 crossref_primary_10_1111_psyg_12697 crossref_primary_10_33590_emjneurol_10311025 crossref_primary_10_1186_s13024_021_00512_w crossref_primary_10_1097_WAD_0000000000000533 crossref_primary_10_1016_j_neurobiolaging_2017_12_010 crossref_primary_10_1016_j_bj_2023_03_002 crossref_primary_10_1093_brain_awy150 crossref_primary_10_1111_jnp_12079 crossref_primary_10_1002_alz_14524 crossref_primary_10_1016_j_bbadis_2013_09_010 crossref_primary_10_1093_brain_awaa327 crossref_primary_10_1371_journal_pone_0201852 crossref_primary_10_1097_RLU_0000000000005793 crossref_primary_10_1002_ana_24960 crossref_primary_10_1080_13825585_2023_2249190 crossref_primary_10_1016_j_nicl_2013_08_007 crossref_primary_10_3233_JAD_210218 crossref_primary_10_1111_jon_12138 crossref_primary_10_1016_j_nbd_2014_05_001 crossref_primary_10_1186_s13195_014_0079_9 crossref_primary_10_1093_brain_awz150 crossref_primary_10_17340_jkna_2015_4_2 crossref_primary_10_1002_alz_13403 crossref_primary_10_1002_ana_24719 crossref_primary_10_1016_j_psyneuen_2021_105248 crossref_primary_10_1007_s40520_017_0741_8 crossref_primary_10_1212_WNL_0000000000004521 crossref_primary_10_17340_jkna_2019_1_1 crossref_primary_10_1016_j_exger_2022_111715 crossref_primary_10_1016_j_trci_2019_08_009 crossref_primary_10_1093_braincomms_fcab182 crossref_primary_10_1016_j_conb_2015_09_002 crossref_primary_10_1016_j_jalz_2016_10_006 crossref_primary_10_3233_JAD_170201 crossref_primary_10_1016_j_jalz_2012_06_002 crossref_primary_10_1016_j_neurobiolaging_2021_09_019 crossref_primary_10_1038_s41467_023_38878_8 crossref_primary_10_1093_brain_awy053 crossref_primary_10_3389_fncel_2014_00113 crossref_primary_10_3233_JAD_180240 crossref_primary_10_1016_S1474_4422_17_30077_7 crossref_primary_10_1016_j_clinph_2015_08_010 crossref_primary_10_1002_hbm_23897 crossref_primary_10_1016_j_jgr_2024_02_002 crossref_primary_10_1523_JNEUROSCI_4409_12_2013 crossref_primary_10_1371_journal_pone_0091400 crossref_primary_10_3390_nu16121952 crossref_primary_10_2174_1874609812666190112095430 crossref_primary_10_1016_j_neuroimage_2013_02_059 crossref_primary_10_1007_s00415_022_11025_x crossref_primary_10_1016_j_nicl_2017_08_022 crossref_primary_10_1016_j_neurobiolaging_2016_03_025 crossref_primary_10_1002_alz_12377 crossref_primary_10_3233_JAD_160326 crossref_primary_10_1016_S1474_4422_13_70217_5 crossref_primary_10_3233_JAD_160204 crossref_primary_10_14283_jpad_2019_25 crossref_primary_10_1093_braincomms_fcad058 crossref_primary_10_1212_WNL_0000000000000386 crossref_primary_10_1159_000353280 crossref_primary_10_1016_j_mayocp_2017_02_011 crossref_primary_10_3233_JAD_170261 crossref_primary_10_3389_fnagi_2022_829049 crossref_primary_10_1007_s00259_021_05246_x crossref_primary_10_1038_mp_2016_226 crossref_primary_10_1016_j_remnie_2017_10_017 crossref_primary_10_3233_JAD_170147 crossref_primary_10_1016_j_neurobiolaging_2016_03_014 crossref_primary_10_1016_j_neuropsychologia_2016_09_024 crossref_primary_10_1002_ana_23816 crossref_primary_10_18632_oncotarget_26162 crossref_primary_10_1002_ana_23931 crossref_primary_10_1002_alz_12140 crossref_primary_10_1016_j_dadm_2017_01_004 crossref_primary_10_1002_acn3_192 crossref_primary_10_1038_nrneurol_2012_241 crossref_primary_10_3233_JAD_150785 crossref_primary_10_1212_WNL_0b013e31826e2696 crossref_primary_10_1016_j_neurol_2020_01_356 crossref_primary_10_3348_jksr_2022_0052 crossref_primary_10_3233_JAD_181243 crossref_primary_10_1016_j_cger_2013_07_009 crossref_primary_10_1016_S0140_6736_20_30689_9 crossref_primary_10_1016_j_cger_2013_07_006 crossref_primary_10_1007_s11065_017_9345_5 crossref_primary_10_2217_fnl_2018_0003 crossref_primary_10_3233_JAD_190077 crossref_primary_10_15252_emmm_201506123 crossref_primary_10_3233_JAD_210525 crossref_primary_10_1080_14728214_2020_1808621 crossref_primary_10_3390_medicines9080042 crossref_primary_10_1002_brb3_2850 crossref_primary_10_3233_JAD_181261 crossref_primary_10_3389_fnagi_2016_00139 crossref_primary_10_1007_s00406_015_0628_7 crossref_primary_10_1212_WNL_0000000000001209 crossref_primary_10_1016_S1474_4422_13_70194_7 crossref_primary_10_1097_MD_0000000000015972 crossref_primary_10_1016_j_neurobiolaging_2018_06_023 crossref_primary_10_1212_WNL_0b013e318295d6cf crossref_primary_10_1002_alz_13692 crossref_primary_10_1093_gerona_glac064 crossref_primary_10_3233_JAD_171145 crossref_primary_10_1016_j_jalz_2013_09_003 crossref_primary_10_1016_j_biopsych_2020_06_029 crossref_primary_10_3233_JAD_240005 crossref_primary_10_1016_j_trci_2017_10_004 crossref_primary_10_1111_psyg_12729 crossref_primary_10_1016_j_neuropsychologia_2017_12_014 crossref_primary_10_1093_brain_awz099 crossref_primary_10_3233_JAD_160365 crossref_primary_10_1212_WNL_0000000000000467 crossref_primary_10_1016_j_freeradbiomed_2017_08_028 crossref_primary_10_1016_S1474_4422_14_70252_2 crossref_primary_10_1186_s13195_021_00835_2 crossref_primary_10_1002_VIW_20220080 crossref_primary_10_1016_j_neurobiolaging_2017_10_023 crossref_primary_10_1016_j_jalz_2015_05_002 crossref_primary_10_1016_j_jalz_2015_05_001 crossref_primary_10_1016_j_sleep_2012_10_009 crossref_primary_10_1111_jnc_15306 crossref_primary_10_1186_s13195_024_01396_w crossref_primary_10_1016_S1474_4422_15_00323_3 crossref_primary_10_1523_JNEUROSCI_3266_12_2012 crossref_primary_10_1038_s41582_024_00962_y crossref_primary_10_1016_j_jalz_2018_03_002 crossref_primary_10_1016_S1474_4422_15_00335_X crossref_primary_10_1016_j_jalz_2016_06_2357 crossref_primary_10_1016_j_nbd_2025_106866 crossref_primary_10_1093_cercor_bhx236 crossref_primary_10_3233_JAD_160273 crossref_primary_10_1016_j_neurol_2022_12_006 crossref_primary_10_1016_S1474_4422_18_30029_2 crossref_primary_10_1016_j_neulet_2016_08_045 crossref_primary_10_1186_s12916_015_0297_4 crossref_primary_10_3233_JAD_160143 crossref_primary_10_3233_JAD_161114 crossref_primary_10_1007_s11910_014_0498_9 crossref_primary_10_3389_fendo_2024_1350318 crossref_primary_10_3233_JAD_161233 crossref_primary_10_1016_j_jalz_2016_06_2365 crossref_primary_10_1186_1750_1326_8_20 crossref_primary_10_1212_WNL_0000000000001774 crossref_primary_10_1212_WNL_0b013e3182872830 crossref_primary_10_1016_j_jalz_2016_06_2364 crossref_primary_10_1212_WNL_0000000000002624 crossref_primary_10_1016_j_jalz_2014_03_006 crossref_primary_10_1016_j_neurobiolaging_2014_04_006 crossref_primary_10_1016_S1474_4422_15_00182_9 crossref_primary_10_3390_nu10122007 crossref_primary_10_1007_s00401_024_02743_9 crossref_primary_10_1016_j_biopsych_2014_08_024 crossref_primary_10_7554_eLife_105446_3 crossref_primary_10_1038_s41598_019_42632_w crossref_primary_10_1016_j_arr_2014_02_001 crossref_primary_10_1002_mds_26666 crossref_primary_10_1016_j_jalz_2013_01_009 crossref_primary_10_1093_braincomms_fcab226 crossref_primary_10_1016_j_expneurol_2014_08_021 crossref_primary_10_1212_WNL_0000000000002979 crossref_primary_10_1002_alz_14469 crossref_primary_10_1038_s41398_021_01628_9 crossref_primary_10_1097_WCO_0000000000000036 crossref_primary_10_1038_s41398_022_01899_w crossref_primary_10_1212_WNL_0000000000000550 crossref_primary_10_1371_journal_pone_0079378 crossref_primary_10_1016_j_jalz_2013_01_004 crossref_primary_10_2967_jnumed_113_132647 crossref_primary_10_1038_nrneurol_2013_107 crossref_primary_10_1016_j_neuroimage_2015_03_020 crossref_primary_10_1186_s13024_018_0301_5 crossref_primary_10_3233_JAD_150128 crossref_primary_10_1016_j_neurobiolaging_2017_03_023 crossref_primary_10_1371_journal_pone_0217026 crossref_primary_10_1111_ene_15337 crossref_primary_10_1007_s13311_021_01027_4 crossref_primary_10_3233_JAD_160052 crossref_primary_10_1212_WNL_0b013e31828ab35d crossref_primary_10_1016_j_neurobiolaging_2016_01_133 crossref_primary_10_3233_JAD_179908 crossref_primary_10_1016_j_neurobiolaging_2017_01_013 crossref_primary_10_1186_s13195_014_0062_5 crossref_primary_10_1007_s15005_014_0805_7 crossref_primary_10_1002_ana_26492 crossref_primary_10_1093_braincomms_fcaa068 crossref_primary_10_1126_scitranslmed_aaf2362 crossref_primary_10_1212_WNL_0000000000003812 crossref_primary_10_1007_s00259_016_3462_x crossref_primary_10_1016_j_nicl_2018_02_008 crossref_primary_10_1080_15622975_2017_1375556 crossref_primary_10_3233_JAD_150117 crossref_primary_10_3233_JAD_150358 crossref_primary_10_1371_journal_pone_0188501 crossref_primary_10_1080_14737175_2024_2367016 crossref_primary_10_3233_JAD_151201 crossref_primary_10_1007_s13139_022_00767_1 crossref_primary_10_1007_s10433_022_00735_w crossref_primary_10_1007_s10072_016_2477_1 crossref_primary_10_3389_fdgth_2021_750549 crossref_primary_10_1111_joim_12190 crossref_primary_10_1111_bpa_12399 crossref_primary_10_1016_j_jalz_2016_01_006 crossref_primary_10_1016_j_neurobiolaging_2021_04_024 crossref_primary_10_1038_nrneurol_2013_21 crossref_primary_10_1016_j_jalz_2015_06_1887 crossref_primary_10_1016_j_neurobiolaging_2013_09_028 crossref_primary_10_3174_ajnr_A3847 crossref_primary_10_1007_s13311_021_01026_5 crossref_primary_10_1111_joim_12199 crossref_primary_10_1186_s13195_016_0220_z crossref_primary_10_1212_WNL_0000000000001738 crossref_primary_10_3233_JAD_181088 crossref_primary_10_7554_eLife_105446 crossref_primary_10_3389_fnagi_2014_00316 crossref_primary_10_1016_j_gmhc_2013_04_003 crossref_primary_10_1016_j_jalz_2014_12_001 crossref_primary_10_1038_s41598_021_95206_0 crossref_primary_10_1016_j_neurobiolaging_2013_09_039 crossref_primary_10_1007_s12021_015_9266_5 crossref_primary_10_1016_j_eujim_2022_102133 crossref_primary_10_1186_1741_7015_10_127 crossref_primary_10_1080_14728214_2016_1241232 crossref_primary_10_1016_S1474_4422_17_30116_3 crossref_primary_10_1053_j_gastro_2023_05_052 crossref_primary_10_1212_WNL_0000000000209753 crossref_primary_10_1093_cercor_bhad017 crossref_primary_10_1176_appi_ajp_2016_16111317 crossref_primary_10_3233_JAD_179943 crossref_primary_10_1371_journal_pone_0248122 crossref_primary_10_1038_s41467_019_10152_w crossref_primary_10_3233_JAD_190624 crossref_primary_10_1016_j_jalz_2018_02_018 crossref_primary_10_1186_s13024_020_00374_8 crossref_primary_10_1212_WNL_0000000000002923 crossref_primary_10_1517_14712598_2014_935332 crossref_primary_10_1016_j_neuron_2014_10_038 crossref_primary_10_1212_WNL_0000000000001712 crossref_primary_10_1016_j_neurobiolaging_2014_02_015 crossref_primary_10_1016_j_nbd_2022_105887 crossref_primary_10_1212_WNL_0000000000007248 crossref_primary_10_1016_j_dadm_2016_10_007 crossref_primary_10_1016_j_nicl_2021_102717 crossref_primary_10_1002_dad2_12271 crossref_primary_10_1007_s11065_014_9267_4 crossref_primary_10_3233_JAD_200087 crossref_primary_10_3389_fnins_2019_00038 crossref_primary_10_1212_WNL_0000000000000856 crossref_primary_10_1212_WNL_0000000000000977 crossref_primary_10_1186_s13195_019_0487_y crossref_primary_10_1212_01_wnl_0000438229_56094_54 crossref_primary_10_1002_dad2_12026 crossref_primary_10_1016_S1474_4422_14_70207_8 crossref_primary_10_1007_s13311_021_01146_y crossref_primary_10_1093_brain_awv326 crossref_primary_10_1212_CPJ_0000000000200291 crossref_primary_10_3233_JAD_179928 crossref_primary_10_1016_j_neurobiolaging_2016_06_011 crossref_primary_10_1038_nrneurol_2015_251 crossref_primary_10_1016_j_jneumeth_2022_109581 crossref_primary_10_1038_nrneurol_2014_214 crossref_primary_10_1093_cercor_bhu238 crossref_primary_10_1186_s13195_018_0362_2 crossref_primary_10_1007_s00401_015_1407_2 crossref_primary_10_1590_S1980_5764_2016DN1002003 crossref_primary_10_1093_brain_awv112 crossref_primary_10_1016_j_nrl_2017_12_011 crossref_primary_10_1016_S1474_4422_16_30125_9 crossref_primary_10_1093_gerona_glx240 crossref_primary_10_1093_arclin_acac016 crossref_primary_10_15252_emmm_201809712 crossref_primary_10_1155_2014_826503 crossref_primary_10_1016_j_smrv_2016_02_002 crossref_primary_10_1016_j_jalz_2016_06_001 crossref_primary_10_3233_JAD_161197 crossref_primary_10_1016_j_ijpsycho_2015_02_005 crossref_primary_10_3233_JAD_161194 crossref_primary_10_1016_j_neuroimage_2017_05_049 crossref_primary_10_1016_j_neurobiolaging_2015_04_013 crossref_primary_10_1016_S1474_4422_15_00093_9 crossref_primary_10_2217_fnl_14_40 crossref_primary_10_1186_2051_5960_2_26 crossref_primary_10_3233_JAD_141494 crossref_primary_10_1186_s40478_021_01225_3 crossref_primary_10_1093_jmp_jhad009 crossref_primary_10_1016_j_jalz_2016_08_005 crossref_primary_10_1038_s42003_024_07076_7 crossref_primary_10_1186_s12916_023_02811_z crossref_primary_10_1002_dad2_12198 crossref_primary_10_1212_WNL_0b013e3182a8418b crossref_primary_10_1016_j_coph_2013_10_002 crossref_primary_10_3389_fnagi_2021_698571 crossref_primary_10_1016_j_trci_2018_01_003 crossref_primary_10_1002_ana_25684 crossref_primary_10_1016_j_neurobiolaging_2016_06_003 crossref_primary_10_3390_diagnostics10050326 crossref_primary_10_3390_brainsci13101443 crossref_primary_10_1212_01_wnl_0000435568_38352_2e crossref_primary_10_1016_j_bandc_2017_11_003 crossref_primary_10_18632_aging_103678 crossref_primary_10_1007_s00259_019_04379_4 crossref_primary_10_3389_fnagi_2023_1121500 crossref_primary_10_1212_WNL_0000000000000939 crossref_primary_10_1016_j_jalz_2019_03_016 crossref_primary_10_1126_scitranslmed_3002609 crossref_primary_10_3233_JAD_160907 crossref_primary_10_1016_S0140_6736_21_01421_5 crossref_primary_10_1016_j_neurobiolaging_2017_09_027 crossref_primary_10_3233_JAD_200059 crossref_primary_10_1016_j_jalz_2014_04_009 crossref_primary_10_1016_j_neurobiolaging_2014_03_006 crossref_primary_10_1093_cercor_bht076 crossref_primary_10_1016_j_neuropsychologia_2015_04_034 crossref_primary_10_1155_2014_302712 crossref_primary_10_1016_j_neurobiolaging_2013_10_081 crossref_primary_10_1016_j_nrleng_2017_12_012 crossref_primary_10_1007_s00406_016_0732_3 crossref_primary_10_1053_j_semnuclmed_2016_09_006 crossref_primary_10_1016_j_nicl_2013_11_010 crossref_primary_10_1002_mds_26191 crossref_primary_10_1073_pnas_1525309113 crossref_primary_10_1016_j_archger_2022_104668 crossref_primary_10_1016_j_nicl_2020_102312 crossref_primary_10_1016_j_neurobiolaging_2023_09_012 crossref_primary_10_1186_s13195_023_01217_6 crossref_primary_10_1007_s00401_014_1349_0 crossref_primary_10_3348_kjr_2021_0323 crossref_primary_10_1016_j_jad_2019_03_055 crossref_primary_10_3233_JAD_180966 |
Cites_doi | 10.2967/jnumed.108.057612 10.1212/WNL.0b013e3181af79e5 10.1097/01.mlr.0000163645.41407.09 10.1002/ana.21904 10.1016/S1474-4422(09)70299-6 10.1212/WNL.0b013e3181e8e8b8 10.1001/archneur.65.11.1509 10.1148/radiology.172.2.2748838 10.1017/S1355617701755105 10.3233/JAD-2009-1227 10.1212/WNL.55.1.134 10.1093/brain/awp062 10.1118/1.3116776 10.1021/jm030026b 10.1212/01.wnl.0000219668.47116.e6 10.1093/brain/awq277 10.1002/ana.22248 10.1001/archneurol.2009.316 10.1016/j.neuropsychologia.2011.04.012 10.1212/01.wnl.0000271090.28148.24 10.1002/ana.21953 10.1002/ana.20318 10.1016/j.neuroimage.2007.09.073 10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X 10.1212/WNL.0b013e3181f11d85 10.1212/WNL.55.3.370 10.1093/cercor/bhn113 10.1016/S0896-6273(02)00569-X 10.1016/j.jalz.2010.03.004 10.1002/ana.22315 10.1001/archneur.63.7.936 10.1093/brain/awm336 10.1212/WNL.0b013e3181d3e3e9 10.2967/jnumed.108.058529 10.1212/01.WNL.0000115115.98960.37 10.1212/01.wnl.0000261919.22630.ea 10.1212/01.WNL.0000118211.78503.F5 10.1001/jama.292.23.2901 10.1002/ana.21559 10.1002/ana.22333 10.1001/archneurol.2009.27 10.1001/jama.290.12.1624 10.1002/ana.21610 10.1177/0891988705281872 10.1093/brain/awq154 10.1016/j.jalz.2010.03.003 10.1016/j.jalz.2011.03.003 10.1148/radiol.11101637 10.1212/01.wnl.0000324924.91351.7d 10.1002/emmm.200900048 10.1002/ana.21706 10.1038/nature08538 10.1371/journal.pone.0012853 10.1093/brain/awn320 10.1093/jnen/62.11.1087 10.1212/WNL.0b013e3182166e96 10.1016/j.neurobiolaging.2010.04.007 10.1093/brain/awp007 10.1001/archneurol.2009.272 10.1002/ana.20009 10.1212/01.wnl.0000228230.26044.a4 10.1159/000115751 10.1038/sj.jcbfm.9600146 10.1056/NEJM199603213341202 10.1016/j.neuroimage.2008.05.012 10.1001/archneurol.2009.269 10.1002/ana.21208 10.1001/archneurol.2011.123 10.1016/j.neurobiolaging.2008.02.007 10.1016/j.neuroimage.2011.01.049 |
ContentType | Journal Article |
Copyright | Copyright © 2012 American Neurological Association 2015 INIST-CNRS Copyright © 2012 American Neurological Association. |
Copyright_xml | – notice: Copyright © 2012 American Neurological Association – notice: 2015 INIST-CNRS – notice: Copyright © 2012 American Neurological Association. |
DBID | BSCLL AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K K9. 7X8 |
DOI | 10.1002/ana.22628 |
DatabaseName | Istex CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Toxicology Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Neurosciences Abstracts MEDLINE ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1531-8249 |
EndPage | 775 |
ExternalDocumentID | 3276327811 22488240 26006740 10_1002_ana_22628 ANA22628 ark_67375_WNG_TSB25X3M_C |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH/National Institute on Aging funderid: R01 AG11378; U01 AG006786; P50 AG16574; C06 RR018898 – fundername: NIA NIH HHS grantid: U01 AG006786 – fundername: NIA NIH HHS grantid: P50 AG016574 – fundername: NIA NIH HHS grantid: R01 AG11378 – fundername: NIA NIH HHS grantid: P50 AG16574 – fundername: NIA NIH HHS grantid: R01 AG041851 – fundername: NIA NIH HHS grantid: R01 AG011378 – fundername: NCRR NIH HHS grantid: C06 RR018898 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OB 1OC 1ZS 23M 2QL 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEJM AAESR AAEVG AAHHS AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBMB ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRZS ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFAZI AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE AJJEV ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN F00 F01 F04 F5P F8P FEDTE FUBAC FYBCS G-S G.N GNP GODZA GOZPB GRPMH H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KD1 KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LXL LXN LXY LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.- Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 SAMSI SJN SUPJJ TEORI UB1 V2E V8K V9Y VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XJT XPP XSW XV2 YOC YQJ ZGI ZRF ZRR ZXP ZZTAW ~IA ~WT ~X8 AAHQN AAIPD AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K K9. 7X8 |
ID | FETCH-LOGICAL-c5208-7841b44c786d5f7a64b3761023b4214a9f6743018b92d56e7e4cfaa92895e1f13 |
IEDL.DBID | DR2 |
ISSN | 0364-5134 1531-8249 |
IngestDate | Fri Jul 11 01:21:38 EDT 2025 Fri Jul 11 09:55:30 EDT 2025 Fri Jul 25 12:19:45 EDT 2025 Wed Feb 19 01:51:26 EST 2025 Mon Jul 21 09:13:34 EDT 2025 Tue Jul 01 02:24:02 EDT 2025 Thu Apr 24 23:02:45 EDT 2025 Wed Aug 20 07:25:47 EDT 2025 Wed Oct 30 09:51:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Nervous system diseases Senescence Alzheimer disease Central nervous system disease Surgical approach Degenerative disease Asymptomatic Cerebral disorder |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 Copyright © 2012 American Neurological Association. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5208-7841b44c786d5f7a64b3761023b4214a9f6743018b92d56e7e4cfaa92895e1f13 |
Notes | NIH/National Institute on Aging - No. R01 AG11378; No. U01 AG006786; No. P50 AG16574; No. C06 RR018898 ArticleID:ANA22628 ark:/67375/WNG-TSB25X3M-C istex:802930EF123841497EA56C8247B3C65774CCEFD5 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 22488240 |
PQID | 1516475749 |
PQPubID | 946345 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1520379720 proquest_miscellaneous_1021980786 proquest_journals_1516475749 pubmed_primary_22488240 pascalfrancis_primary_26006740 crossref_primary_10_1002_ana_22628 crossref_citationtrail_10_1002_ana_22628 wiley_primary_10_1002_ana_22628_ANA22628 istex_primary_ark_67375_WNG_TSB25X3M_C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2012 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: June 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: Hoboken, NJ – name: United States – name: Minneapolis |
PublicationTitle | Annals of neurology |
PublicationTitleAlternate | Ann Neurol |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss – name: Wiley Subscription Services, Inc |
References | Jagust WJ, Bandy D, Chen K, et al. The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core. Alzheimers Dement 2010; 6: 221-229. Becker JA, Hedden T, Carmasin J, et al. Amyloid-β associated cortical thinning in clinically normal elderly. Ann Neurol 2011; 69: 1032-1042. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann Neurol 2004; 55: 306-319. Desikan RS, Sabuncu MR, Schmansky NJ, et al. Selective disruption of the cerebral neocortex in Alzheimer's disease. PLoS One 2010; 5: e12853. Stomrud E, Hansson O, Zetterberg H, et al. Correlation of longitudinal cerebrospinal fluid biomarkers with cognitive decline in healthy older adults. Arch Neurol 2010; 67: 217-223. Bouwman FH, Schoonenboom NS, Verwey NA, et al. CSF biomarker levels in early and late onset Alzheimer's disease. Neurobiol Aging 2009; 30: 1895-1901. Jack CR Jr, Bernstein MA, Borowski BJ, et al. Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative. Alzheimers Dement 2010; 6: 212-220. Fischl B, Salat DH, Busa E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33: 341-355. Aizenstein HJ, Nebes RD, Saxton JA, et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 2008; 65: 1509-1517. Dickerson BC, Stoub TR, Shah RC, et al. Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 2011; 76: 1395-1402. Gunter JL, Bernstein MA, Borowski BJ, et al. Measurement of MRI scanner performance with the ADNI phantom. Med Phys 2009; 36: 2193-2205. Fagan AM, Mintun MA, Shah AR, et al. Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer's disease. EMBO Mol Med 2009; 1: 371-380. Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol 2009; 66: 200-208. Landau SM, Harvey D, Madison CM, et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 2010; 75: 230-238. Rentz DM, Locascio JJ, Becker JA, et al. Cognition, reserve, and amyloid deposition in normal aging. Ann Neurol 2010; 67: 353-364. Moffat SD, Szekely CA, Zonderman AB, et al. Longitudinal change in hippocampal volume as a function of apolipoprotein E genotype. Neurology 2000; 55: 134-136. Jack CR Jr, Wiste HJ, Vemuri P, et al. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease. Brain 2010; 133: 3336-3348. Petersen RC, Roberts RO, Knopman DS, et al. Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging. Neurology 2010; 75: 889-897. Vemuri P, Wiste HJ, Weigand SD, et al. Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease. Ann Neurol 2010; 67: 308-316. Sonnen JA, Larson EB, Crane PK, et al. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann Neurol 2007; 62: 406-413. Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 2007; 69: 2197-2204. Schneider JA, Wilson RS, Bienias JL, et al. Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology. Neurology 2004; 62: 1148-1155. Jack CR Jr, Lowe VJ, Senjem ML, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain 2008; 131( pt 3): 665-680. Langa KM, Foster NL, Larson EB. Mixed dementia: emerging concepts and therapeutic implications. JAMA 2004; 292: 2901-2908. Rowe CC, Ellis KA, Rimajova M, et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 2010; 31: 1275-1283. Jack CR Jr, Lowe VJ, Weigand SD, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain 2009; 132( pt 5): 1355-1365. Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 2010; 9: 119-128. Knopman DS, Parisi JE, Salviati A, et al. Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 2003; 62: 1087-1095. Mathis CA, Wang Y, Holt DP, et al. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 2003; 46: 2740-2754. Roberts RO, Geda YE, Knopman DS, et al. The Mayo Clinic Study of Aging: design and sampling, participation, baseline measures and sample characteristics. Neuroepidemiology 2008; 30: 58-69. Villemagne VL, Pike KE, Chételat G, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol 2011; 69: 181-192. Chen K, Ayutyanont N, Langbaum JB, et al. Characterizing Alzheimer's disease using a hypometabolic convergence index. Neuroimage 2011; 56: 52-60. Schmitt FA, Davis DG, Wekstein DR, et al. "Preclinical" AD revisited: neuropathology of cognitively normal older adults. Neurology 2000; 55: 370-376. Vemuri P, Whitwell JL, Kantarci K, et al. Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage. Neuroimage 2008; 42: 559-567. Resnick SM, Sojkova J, Zhou Y, et al. Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB. Neurology 2010; 74: 807-815. Petrovitch H, Ross GW, Steinhorn SC, et al. AD lesions and infarcts in demented and non-demented Japanese-American men. Ann Neurol 2005; 57: 98-103. Glasgow RE, Magid DJ, Beck A, et al. Practical clinical trials for translating research to practice: design and measurement recommendations. Med Care 2005; 43: 551-557. Peskind ER, Li G, Shofer J, et al. Age and apolipoprotein E*4 allele effects on cerebrospinal fluid beta-amyloid 42 in adults with normal cognition. Arch Neurol 2006; 63: 936-939. Pike KE, Ellis KA, Villemagne VL, et al. Cognition and beta-amyloid in preclinical Alzheimer's disease: data from the AIBL study. Neuropsychologia 2011; 49: 2384-2390. Mintun MA, Larossa GN, Sheline YI, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006; 67: 446-452. Morris JC, Roe CM, Grant EA, et al. Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch Neurol 2009; 66: 1469-1475. Rowe CC, Ng S, Ackermann U, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007; 68: 1718-1725. Reed BR, Mungas D, Farias ST, et al. Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain 2010; 133( pt 8): 2196-2209. Albert MS, Moss MB, Tanzi R, Jones K. Preclinical prediction of AD using neuropsychological tests. J Int Neuropsychol Soc 2001; 7: 631-639. Bennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006; 66: 1837-1844. McNamee RL, Yee SH, Price JC, et al. Consideration of optimal time window for Pittsburgh compound B PET summed uptake measurements. J Nucl Med 2009; 50: 348-355. Shaw LM, Vanderstichele H, Knapik-Czajka M, et al. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol 2009; 65: 403-413. Lowe VJ, Kemp BJ, Jack CR Jr, et al. Comparison of 18F-FDG and PiB PET in cognitive impairment. J Nucl Med 2009; 50: 878-886. Whitwell JL, Josephs KA, Murray ME, et al. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology 2008; 71: 743-749. Fagan AM, Head D, Shah AR, et al. Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Ann Neurol 2009; 65: 176-183. Craft S. The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch Neurol 2009; 66: 300-305. Schneider JA, Aggarwal NT, Barnes L, et al. The neuropathology of older persons with and without dementia from community versus clinic cohorts. J Alzheimers Dis 2009; 18: 691-701. Price JC, Klunk WE, Lopresti BJ, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh compound-B. J Cereb Blood Flow Metab 2005; 25: 1528-1547. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011; 7: 280-292. Reiman EM, Caselli RJ, Yun LS, et al. Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 1996; 334: 752-758. Vemuri P, Wiste HJ, Weigand SD, et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 2009; 73: 287-293. Tunis SR, Stryer DB, Clancy CM. Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy. JAMA 2003; 290: 1624-1632. Storandt M, Mintun MA, Head D, Morris JC. Cognitive decline and brain volume loss as signatures of cerebral amyloid-beta peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Abeta deposition. Arch Neurol 2009; 66: 1476-1481. Schott JM, Bartlett JW, Fox NC, et al. Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Abeta1-42. Ann Neurol 2010; 68: 825-834. Schuff N, Woerner N, Boreta L, et al. MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE gen 2004; 62 2008; 39 1999; 45 2011; 56 2008; 30 2008; 71 2005; 25 2010; 67 2006; 63 2010; 68 2006; 67 2009; 50 2006; 66 2000; 55 2004; 292 2003; 46 2008; 65 2011; 68 2007; 62 2011; 69 1996; 334 2009; 19 2010; 5 2007; 68 2010; 74 2010; 6 2007; 69 2010; 9 2009; 18 2011; 259 2009; 66 2010; 75 2010; 31 2009; 65 2002; 33 2009; 132 2009 2011; 76 2005; 43 2003; 290 2011; 7 2005; 46 2004; 55 2009; 36 2009; 30 2009; 73 2001; 7 2010; 133 1989; 172 2009; 461 2008; 42 2011; 49 2003; 62 2009; 1 2008; 131 2005; 18 2005; 57 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_17_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_62_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_64_2 e_1_2_7_45_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_71_2 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 Lopresti BJ (e_1_2_7_19_2) 2005; 46 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 Schuff N (e_1_2_7_57_2) 2009; 132 e_1_2_7_72_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_38_2 e_1_2_7_59_2 15079015 - Neurology. 2004 Apr 13;62(7):1148-55 18054253 - Neuroimage. 2008 Feb 1;39(3):1186-97 20049742 - EMBO Mol Med. 2009 Nov;1(8-9):371-80 19443597 - J Nucl Med. 2009 Jun;50(6):878-86 10072051 - Ann Neurol. 1999 Mar;45(3):358-68 21529702 - Neuropsychologia. 2011 Jul;49(9):2384-90 16831961 - Arch Neurol. 2006 Jul;63(7):936-9 21181717 - Ann Neurol. 2010 Dec;68(6):825-34 19223409 - J Nucl Med. 2009 Mar;50(3):348-55 21467255 - Radiology. 2011 Jun;259(3):844-51 20886094 - PLoS One. 2010;5(9):e12853 17879383 - Ann Neurol. 2007 Oct;62(4):406-13 2748838 - Radiology. 1989 Aug;172(2):549-54 12801237 - J Med Chem. 2003 Jun 19;46(13):2740-54 19273747 - Arch Neurol. 2009 Mar;66(3):300-5 10932270 - Neurology. 2000 Aug 8;55(3):370-6 14656067 - J Neuropathol Exp Neurol. 2003 Nov;62(11):1087-95 16330558 - J Nucl Med. 2005 Dec;46(12):1959-72 15944649 - J Cereb Blood Flow Metab. 2005 Nov;25(11):1528-47 17502554 - Neurology. 2007 May 15;68(20):1718-25 19042931 - Brain. 2009 May;132(Pt 5):1310-23 21437929 - Ann Neurol. 2011 Jun;69(6):1032-42 18263627 - Brain. 2008 Mar;131(Pt 3):665-80 18632739 - Cereb Cortex. 2009 Mar;19(3):497-510 19296504 - Ann Neurol. 2009 Apr;65(4):403-13 20472326 - Neurobiol Aging. 2010 Aug;31(8):1275-83 8592548 - N Engl J Med. 1996 Mar 21;334(12):752-8 20008650 - Arch Neurol. 2009 Dec;66(12):1469-75 19001171 - Arch Neurol. 2008 Nov;65(11):1509-17 20591858 - Brain. 2010 Aug;133(Pt 8):2196-209 21490323 - Neurology. 2011 Apr 19;76(16):1395-402 15908849 - Med Care. 2005 Jun;43(6):551-7 15562458 - Ann Neurol. 2005 Jan;57(1):98-103 19260027 - Ann Neurol. 2009 Feb;65(2):176-83 14506122 - JAMA. 2003 Sep 24;290(12):1624-32 14991808 - Ann Neurol. 2004 Mar;55(3):306-19 11459114 - J Int Neuropsychol Soc. 2001 Jul;7(5):631-9 10891924 - Neurology. 2000 Jul 12;55(1):134-6 19829371 - Nature. 2009 Oct 15;461(7266):916-22 20142530 - Arch Neurol. 2010 Feb;67(2):217-23 20592257 - Neurology. 2010 Jul 20;75(3):230-8 18765650 - Neurology. 2008 Sep 2;71(10):743-9 20008651 - Arch Neurol. 2009 Dec;66(12):1476-81 20373347 - Ann Neurol. 2010 Mar;67(3):353-64 20083042 - Lancet Neurol. 2010 Jan;9(1):119-28 21276856 - Neuroimage. 2011 May 1;56(1):52-60 11832223 - Neuron. 2002 Jan 31;33(3):341-55 18572417 - Neuroimage. 2008 Aug 15;42(2):559-67 19610308 - Med Phys. 2009 Jun;36(6):2193-205 19251758 - Brain. 2009 Apr;132(Pt 4):1067-77 21670386 - Arch Neurol. 2011 Oct;68(10):1257-66 19749406 - J Alzheimers Dis. 2009;18(3):691-701 20820000 - Neurology. 2010 Sep 7;75(10):889-97 21514248 - Alzheimers Dement. 2011 May;7(3):280-92 19636048 - Neurology. 2009 Jul 28;73(4):287-93 20451870 - Alzheimers Dement. 2010 May;6(3):221-9 16894106 - Neurology. 2006 Aug 8;67(3):446-52 20451869 - Alzheimers Dement. 2010 May;6(3):212-20 18403055 - Neurobiol Aging. 2009 Dec;30(12):1895-901 21280088 - Ann Neurol. 2011 Jan;69(1):181-92 17568013 - Neurology. 2007 Dec 11;69(24):2197-204 15037694 - Neurology. 2004 Mar 23;62(6):925-31 16306244 - J Geriatr Psychiatry Neurol. 2005 Dec;18(4):224-7 20935035 - Brain. 2010 Nov;133(11):3336-48 15598922 - JAMA. 2004 Dec 15;292(23):2901-8 19743450 - Ann Neurol. 2009 Aug;66(2):200-8 20373342 - Ann Neurol. 2010 Mar;67(3):308-16 19339253 - Brain. 2009 May;132(Pt 5):1355-65 20147655 - Neurology. 2010 Mar 9;74(10):807-15 18259084 - Neuroepidemiology. 2008;30(1):58-69 16801647 - Neurology. 2006 Jun 27;66(12):1837-44 |
References_xml | – reference: Langa KM, Foster NL, Larson EB. Mixed dementia: emerging concepts and therapeutic implications. JAMA 2004; 292: 2901-2908. – reference: Chiang GC, Insel PS, Tosun D, et al. Identifying cognitively healthy elderly individuals with subsequent memory decline by using automated MR temporoparietal volumes. Radiology 2011; 259: 844-851. – reference: Chen K, Ayutyanont N, Langbaum JB, et al. Characterizing Alzheimer's disease using a hypometabolic convergence index. Neuroimage 2011; 56: 52-60. – reference: Bennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006; 66: 1837-1844. – reference: Lopresti BJ, Klunk WE, Mathis CA, et al. Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis. J Nucl Med 2005; 46: 1959-1972. – reference: Morris JC, Roe CM, Grant EA, et al. Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch Neurol 2009; 66: 1469-1475. – reference: Fagan AM, Head D, Shah AR, et al. Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly. Ann Neurol 2009; 65: 176-183. – reference: Jack CR Jr, Wiste HJ, Vemuri P, et al. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease. Brain 2010; 133: 3336-3348. – reference: Gunter JL, Bernstein MA, Borowski BJ, et al. Measurement of MRI scanner performance with the ADNI phantom. Med Phys 2009; 36: 2193-2205. – reference: Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 2007; 69: 2197-2204. – reference: Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound-B. Ann Neurol 2004; 55: 306-319. – reference: Aizenstein HJ, Nebes RD, Saxton JA, et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 2008; 65: 1509-1517. – reference: Resnick SM, Sojkova J, Zhou Y, et al. Longitudinal cognitive decline is associated with fibrillar amyloid-beta measured by [11C]PiB. Neurology 2010; 74: 807-815. – reference: Storandt M, Mintun MA, Head D, Morris JC. Cognitive decline and brain volume loss as signatures of cerebral amyloid-beta peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Abeta deposition. Arch Neurol 2009; 66: 1476-1481. – reference: Lowe VJ, Kemp BJ, Jack CR Jr, et al. Comparison of 18F-FDG and PiB PET in cognitive impairment. J Nucl Med 2009; 50: 878-886. – reference: Villemagne VL, Pike KE, Chételat G, et al. Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann Neurol 2011; 69: 181-192. – reference: Jack CR Jr, Lowe VJ, Weigand SD, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain 2009; 132( pt 5): 1355-1365. – reference: Fischl B, Salat DH, Busa E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002; 33: 341-355. – reference: Mathis CA, Wang Y, Holt DP, et al. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J Med Chem 2003; 46: 2740-2754. – reference: Schneider JA, Wilson RS, Bienias JL, et al. Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology. Neurology 2004; 62: 1148-1155. – reference: Dickerson BC, Bakkour A, Salat DH, et al. The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb Cortex 2009; 19: 497-510. – reference: Jack CR Jr, Lowe VJ, Senjem ML, et al. 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment. Brain 2008; 131( pt 3): 665-680. – reference: Vemuri P, Wiste HJ, Weigand SD, et al. Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease. Ann Neurol 2010; 67: 308-316. – reference: Rowe CC, Ng S, Ackermann U, et al. Imaging beta-amyloid burden in aging and dementia. Neurology 2007; 68: 1718-1725. – reference: Shaw LM, Vanderstichele H, Knapik-Czajka M, et al. Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects. Ann Neurol 2009; 65: 403-413. – reference: Becker JA, Hedden T, Carmasin J, et al. Amyloid-β associated cortical thinning in clinically normal elderly. Ann Neurol 2011; 69: 1032-1042. – reference: Ingelsson M, Fukumoto H, Newell KL, et al. Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 2004; 62: 925-931. – reference: Glasgow RE, Magid DJ, Beck A, et al. Practical clinical trials for translating research to practice: design and measurement recommendations. Med Care 2005; 43: 551-557. – reference: Desikan RS, Sabuncu MR, Schmansky NJ, et al. Selective disruption of the cerebral neocortex in Alzheimer's disease. PLoS One 2010; 5: e12853. – reference: Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature 2009; 461: 916-922. – reference: Jack CR Jr, Twomey CK, Zinsmeister AR, et al. Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults. Radiology 1989; 172: 549-554. – reference: Jagust WJ, Bandy D, Chen K, et al. The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core. Alzheimers Dement 2010; 6: 221-229. – reference: Dickerson BC, Stoub TR, Shah RC, et al. Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology 2011; 76: 1395-1402. – reference: Petrovitch H, Ross GW, Steinhorn SC, et al. AD lesions and infarcts in demented and non-demented Japanese-American men. Ann Neurol 2005; 57: 98-103. – reference: Jack CR Jr, Bernstein MA, Borowski BJ, et al. Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative. Alzheimers Dement 2010; 6: 212-220. – reference: Knopman DS, Parisi JE, Salviati A, et al. Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 2003; 62: 1087-1095. – reference: Mormino EC, Kluth JT, Madison CM, et al. Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain 2009; 132( pt 5): 1310-1323. – reference: Price JC, Klunk WE, Lopresti BJ, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh compound-B. J Cereb Blood Flow Metab 2005; 25: 1528-1547. – reference: Albert MS, Moss MB, Tanzi R, Jones K. Preclinical prediction of AD using neuropsychological tests. J Int Neuropsychol Soc 2001; 7: 631-639. – reference: Roberts RO, Geda YE, Knopman DS, et al. The Mayo Clinic Study of Aging: design and sampling, participation, baseline measures and sample characteristics. Neuroepidemiology 2008; 30: 58-69. – reference: Tunis SR, Stryer DB, Clancy CM. Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy. JAMA 2003; 290: 1624-1632. – reference: Rentz DM, Locascio JJ, Becker JA, et al. Cognition, reserve, and amyloid deposition in normal aging. Ann Neurol 2010; 67: 353-364. – reference: Schneider JA, Aggarwal NT, Barnes L, et al. The neuropathology of older persons with and without dementia from community versus clinic cohorts. J Alzheimers Dis 2009; 18: 691-701. – reference: Craft S. The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged. Arch Neurol 2009; 66: 300-305. – reference: Sonnen JA, Larson EB, Crane PK, et al. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann Neurol 2007; 62: 406-413. – reference: Landau SM, Harvey D, Madison CM, et al. Comparing predictors of conversion and decline in mild cognitive impairment. Neurology 2010; 75: 230-238. – reference: Vemuri P, Gunter JL, Senjem ML, et al. Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage 2008; 39: 1186-1197. – reference: Petersen RC, Roberts RO, Knopman DS, et al. Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging. Neurology 2010; 75: 889-897. – reference: Whitwell JL, Josephs KA, Murray ME, et al. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology 2008; 71: 743-749. – reference: Lo RY, Hubbard AE, Shaw LM, et al. Longitudinal change of biomarkers in cognitive decline. Arch Neurol 2011; 68: 1257-1266. – reference: Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. The neuropathology of probable Alzheimer disease and mild cognitive impairment. Ann Neurol 2009; 66: 200-208. – reference: Rowe CC, Ellis KA, Rimajova M, et al. Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 2010; 31: 1275-1283. – reference: Bouwman FH, Schoonenboom NS, Verwey NA, et al. CSF biomarker levels in early and late onset Alzheimer's disease. Neurobiol Aging 2009; 30: 1895-1901. – reference: White L, Small BJ, Petrovitch H, et al. Recent clinical-pathologic research on the causes of dementia in late life: update from the Honolulu-Asia Aging Study. J Geriatr Psychiatry Neurol 2005; 18: 224-227. – reference: Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 2011; 7: 280-292. – reference: Peskind ER, Li G, Shofer J, et al. Age and apolipoprotein E*4 allele effects on cerebrospinal fluid beta-amyloid 42 in adults with normal cognition. Arch Neurol 2006; 63: 936-939. – reference: Vemuri P, Wiste HJ, Weigand SD, et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology 2009; 73: 287-293. – reference: Schott JM, Bartlett JW, Fox NC, et al. Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Abeta1-42. Ann Neurol 2010; 68: 825-834. – reference: Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol 2010; 9: 119-128. – reference: Schuff N, Woerner N, Boreta L, et al. MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers. Brain 2009; 132( pt 4): 1067-1077. – reference: Price JL, Morris JC. Tangles and plaques in nondemented aging and "preclinical" Alzheimer's disease. Ann Neurol 1999; 45: 358-368. – reference: Reiman EM, Caselli RJ, Yun LS, et al. Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 1996; 334: 752-758. – reference: Reed BR, Mungas D, Farias ST, et al. Measuring cognitive reserve based on the decomposition of episodic memory variance. Brain 2010; 133( pt 8): 2196-2209. – reference: Mintun MA, Larossa GN, Sheline YI, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 2006; 67: 446-452. – reference: Schmitt FA, Davis DG, Wekstein DR, et al. "Preclinical" AD revisited: neuropathology of cognitively normal older adults. Neurology 2000; 55: 370-376. – reference: Pike KE, Ellis KA, Villemagne VL, et al. Cognition and beta-amyloid in preclinical Alzheimer's disease: data from the AIBL study. Neuropsychologia 2011; 49: 2384-2390. – reference: Stomrud E, Hansson O, Zetterberg H, et al. Correlation of longitudinal cerebrospinal fluid biomarkers with cognitive decline in healthy older adults. Arch Neurol 2010; 67: 217-223. – reference: Moffat SD, Szekely CA, Zonderman AB, et al. Longitudinal change in hippocampal volume as a function of apolipoprotein E genotype. Neurology 2000; 55: 134-136. – reference: Fagan AM, Mintun MA, Shah AR, et al. Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer's disease. EMBO Mol Med 2009; 1: 371-380. – reference: McNamee RL, Yee SH, Price JC, et al. Consideration of optimal time window for Pittsburgh compound B PET summed uptake measurements. J Nucl Med 2009; 50: 348-355. – reference: Vemuri P, Whitwell JL, Kantarci K, et al. Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage. Neuroimage 2008; 42: 559-567. – volume: 66 start-page: 1837 year: 2006 end-page: 1844 article-title: Neuropathology of older persons without cognitive impairment from two community‐based studies publication-title: Neurology – volume: 67 start-page: 308 year: 2010 end-page: 316 article-title: Effect of apolipoprotein E on biomarkers of amyloid load and neuronal pathology in Alzheimer disease publication-title: Ann Neurol – volume: 259 start-page: 844 year: 2011 end-page: 851 article-title: Identifying cognitively healthy elderly individuals with subsequent memory decline by using automated MR temporoparietal volumes publication-title: Radiology – year: 2009 – volume: 133 start-page: 2196 issue: pt 8 year: 2010 end-page: 2209 article-title: Measuring cognitive reserve based on the decomposition of episodic memory variance publication-title: Brain – volume: 65 start-page: 403 year: 2009 end-page: 413 article-title: Cerebrospinal fluid biomarker signature in Alzheimer's disease neuroimaging initiative subjects publication-title: Ann Neurol – volume: 132 start-page: 1310 issue: pt 5 year: 2009 end-page: 1323 article-title: Episodic memory loss is related to hippocampal‐mediated beta‐amyloid deposition in elderly subjects publication-title: Brain – volume: 69 start-page: 2197 year: 2007 end-page: 2204 article-title: Mixed brain pathologies account for most dementia cases in community‐dwelling older persons publication-title: Neurology – volume: 66 start-page: 1476 year: 2009 end-page: 1481 article-title: Cognitive decline and brain volume loss as signatures of cerebral amyloid‐beta peptide deposition identified with Pittsburgh compound B: cognitive decline associated with Abeta deposition publication-title: Arch Neurol – volume: 36 start-page: 2193 year: 2009 end-page: 2205 article-title: Measurement of MRI scanner performance with the ADNI phantom publication-title: Med Phys – volume: 67 start-page: 217 year: 2010 end-page: 223 article-title: Correlation of longitudinal cerebrospinal fluid biomarkers with cognitive decline in healthy older adults publication-title: Arch Neurol – volume: 30 start-page: 1895 year: 2009 end-page: 1901 article-title: CSF biomarker levels in early and late onset Alzheimer's disease publication-title: Neurobiol Aging – volume: 133 start-page: 3336 year: 2010 end-page: 3348 article-title: Brain beta‐amyloid measures and magnetic resonance imaging atrophy both predict time‐to‐progression from mild cognitive impairment to Alzheimer's disease publication-title: Brain – volume: 172 start-page: 549 year: 1989 end-page: 554 article-title: Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults publication-title: Radiology – volume: 63 start-page: 936 year: 2006 end-page: 939 article-title: Age and apolipoprotein E*4 allele effects on cerebrospinal fluid beta‐amyloid 42 in adults with normal cognition publication-title: Arch Neurol – volume: 132 start-page: 1355 issue: pt 5 year: 2009 end-page: 1365 article-title: Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease publication-title: Brain – volume: 46 start-page: 2740 year: 2003 end-page: 2754 article-title: Synthesis and evaluation of 11C‐labeled 6‐substituted 2‐arylbenzothiazoles as amyloid imaging agents publication-title: J Med Chem – volume: 33 start-page: 341 year: 2002 end-page: 355 article-title: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain publication-title: Neuron – volume: 62 start-page: 925 year: 2004 end-page: 931 article-title: Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain publication-title: Neurology – volume: 66 start-page: 1469 year: 2009 end-page: 1475 article-title: Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease publication-title: Arch Neurol – volume: 25 start-page: 1528 year: 2005 end-page: 1547 article-title: Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh compound‐B publication-title: J Cereb Blood Flow Metab – volume: 461 start-page: 916 year: 2009 end-page: 922 article-title: Multimodal techniques for diagnosis and prognosis of Alzheimer's disease publication-title: Nature – volume: 62 start-page: 1148 year: 2004 end-page: 1155 article-title: Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology publication-title: Neurology – volume: 30 start-page: 58 year: 2008 end-page: 69 article-title: The Mayo Clinic Study of Aging: design and sampling, participation, baseline measures and sample characteristics publication-title: Neuroepidemiology – volume: 74 start-page: 807 year: 2010 end-page: 815 article-title: Longitudinal cognitive decline is associated with fibrillar amyloid‐beta measured by [11C]PiB publication-title: Neurology – volume: 67 start-page: 446 year: 2006 end-page: 452 article-title: [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease publication-title: Neurology – volume: 50 start-page: 348 year: 2009 end-page: 355 article-title: Consideration of optimal time window for Pittsburgh compound B PET summed uptake measurements publication-title: J Nucl Med – volume: 6 start-page: 212 year: 2010 end-page: 220 article-title: Update on the magnetic resonance imaging core of the Alzheimer's disease neuroimaging initiative publication-title: Alzheimers Dement – volume: 69 start-page: 181 year: 2011 end-page: 192 article-title: Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease publication-title: Ann Neurol – volume: 5 start-page: e12853 year: 2010 article-title: Selective disruption of the cerebral neocortex in Alzheimer's disease publication-title: PLoS One – volume: 132 start-page: 1067 issue: pt 4 year: 2009 end-page: 1077 article-title: MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers publication-title: Brain – volume: 45 start-page: 358 year: 1999 end-page: 368 article-title: Tangles and plaques in nondemented aging and “preclinical” Alzheimer's disease publication-title: Ann Neurol – volume: 76 start-page: 1395 year: 2011 end-page: 1402 article-title: Alzheimer‐signature MRI biomarker predicts AD dementia in cognitively normal adults publication-title: Neurology – volume: 69 start-page: 1032 year: 2011 end-page: 1042 article-title: Amyloid‐β associated cortical thinning in clinically normal elderly publication-title: Ann Neurol – volume: 66 start-page: 300 year: 2009 end-page: 305 article-title: The role of metabolic disorders in Alzheimer disease and vascular dementia: two roads converged publication-title: Arch Neurol – volume: 68 start-page: 1718 year: 2007 end-page: 1725 article-title: Imaging beta‐amyloid burden in aging and dementia publication-title: Neurology – volume: 67 start-page: 353 year: 2010 end-page: 364 article-title: Cognition, reserve, and amyloid deposition in normal aging publication-title: Ann Neurol – volume: 62 start-page: 1087 year: 2003 end-page: 1095 article-title: Neuropathology of cognitively normal elderly publication-title: J Neuropathol Exp Neurol – volume: 43 start-page: 551 year: 2005 end-page: 557 article-title: Practical clinical trials for translating research to practice: design and measurement recommendations publication-title: Med Care – volume: 75 start-page: 230 year: 2010 end-page: 238 article-title: Comparing predictors of conversion and decline in mild cognitive impairment publication-title: Neurology – volume: 68 start-page: 825 year: 2010 end-page: 834 article-title: Increased brain atrophy rates in cognitively normal older adults with low cerebrospinal fluid Abeta1–42 publication-title: Ann Neurol – volume: 6 start-page: 221 year: 2010 end-page: 229 article-title: The Alzheimer's Disease Neuroimaging Initiative positron emission tomography core publication-title: Alzheimers Dement – volume: 7 start-page: 280 year: 2011 end-page: 292 article-title: Toward defining the preclinical stages of Alzheimer's disease: recommendations from the National Institute on Aging‐Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement – volume: 71 start-page: 743 year: 2008 end-page: 749 article-title: MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel‐based morphometry study publication-title: Neurology – volume: 7 start-page: 631 year: 2001 end-page: 639 article-title: Preclinical prediction of AD using neuropsychological tests publication-title: J Int Neuropsychol Soc – volume: 292 start-page: 2901 year: 2004 end-page: 2908 article-title: Mixed dementia: emerging concepts and therapeutic implications publication-title: JAMA – volume: 290 start-page: 1624 year: 2003 end-page: 1632 article-title: Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy publication-title: JAMA – volume: 55 start-page: 370 year: 2000 end-page: 376 article-title: “Preclinical” AD revisited: neuropathology of cognitively normal older adults publication-title: Neurology – volume: 57 start-page: 98 year: 2005 end-page: 103 article-title: AD lesions and infarcts in demented and non‐demented Japanese‐American men publication-title: Ann Neurol – volume: 65 start-page: 1509 year: 2008 end-page: 1517 article-title: Frequent amyloid deposition without significant cognitive impairment among the elderly publication-title: Arch Neurol – volume: 75 start-page: 889 year: 2010 end-page: 897 article-title: Prevalence of mild cognitive impairment is higher in men. The Mayo Clinic Study of Aging publication-title: Neurology – volume: 18 start-page: 691 year: 2009 end-page: 701 article-title: The neuropathology of older persons with and without dementia from community versus clinic cohorts publication-title: J Alzheimers Dis – volume: 55 start-page: 306 year: 2004 end-page: 319 article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburgh compound‐B publication-title: Ann Neurol – volume: 42 start-page: 559 year: 2008 end-page: 567 article-title: Antemortem MRI based STructural Abnormality iNDex (STAND)‐scores correlate with postmortem Braak neurofibrillary tangle stage publication-title: Neuroimage – volume: 46 start-page: 1959 year: 2005 end-page: 1972 article-title: Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis publication-title: J Nucl Med – volume: 334 start-page: 752 year: 1996 end-page: 758 article-title: Preclinical evidence of Alzheimer's disease in persons homozygous for the epsilon 4 allele for apolipoprotein E publication-title: N Engl J Med – volume: 9 start-page: 119 year: 2010 end-page: 128 article-title: Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade publication-title: Lancet Neurol – volume: 19 start-page: 497 year: 2009 end-page: 510 article-title: The cortical signature of Alzheimer's disease: regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid‐positive individuals publication-title: Cereb Cortex – volume: 131 start-page: 665 issue: pt 3 year: 2008 end-page: 680 article-title: 11C PiB and structural MRI provide complementary information in imaging of Alzheimer's disease and amnestic mild cognitive impairment publication-title: Brain – volume: 50 start-page: 878 year: 2009 end-page: 886 article-title: Comparison of 18F‐FDG and PiB PET in cognitive impairment publication-title: J Nucl Med – volume: 31 start-page: 1275 year: 2010 end-page: 1283 article-title: Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging publication-title: Neurobiol Aging – volume: 56 start-page: 52 year: 2011 end-page: 60 article-title: Characterizing Alzheimer's disease using a hypometabolic convergence index publication-title: Neuroimage – volume: 65 start-page: 176 year: 2009 end-page: 183 article-title: Decreased cerebrospinal fluid Abeta(42) correlates with brain atrophy in cognitively normal elderly publication-title: Ann Neurol – volume: 1 start-page: 371 year: 2009 end-page: 380 article-title: Cerebrospinal fluid tau and ptau(181) increase with cortical amyloid deposition in cognitively normal individuals: implications for future clinical trials of Alzheimer's disease publication-title: EMBO Mol Med – volume: 49 start-page: 2384 year: 2011 end-page: 2390 article-title: Cognition and beta‐amyloid in preclinical Alzheimer's disease: data from the AIBL study publication-title: Neuropsychologia – volume: 55 start-page: 134 year: 2000 end-page: 136 article-title: Longitudinal change in hippocampal volume as a function of apolipoprotein E genotype publication-title: Neurology – volume: 62 start-page: 406 year: 2007 end-page: 413 article-title: Pathological correlates of dementia in a longitudinal, population‐based sample of aging publication-title: Ann Neurol – volume: 18 start-page: 224 year: 2005 end-page: 227 article-title: Recent clinical‐pathologic research on the causes of dementia in late life: update from the Honolulu‐Asia Aging Study publication-title: J Geriatr Psychiatry Neurol – volume: 68 start-page: 1257 year: 2011 end-page: 1266 article-title: Longitudinal change of biomarkers in cognitive decline publication-title: Arch Neurol – volume: 66 start-page: 200 year: 2009 end-page: 208 article-title: The neuropathology of probable Alzheimer disease and mild cognitive impairment publication-title: Ann Neurol – volume: 39 start-page: 1186 year: 2008 end-page: 1197 article-title: Alzheimer's disease diagnosis in individual subjects using structural MR images: validation studies publication-title: Neuroimage – volume: 73 start-page: 287 year: 2009 end-page: 293 article-title: MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations publication-title: Neurology – ident: e_1_2_7_17_2 doi: 10.2967/jnumed.108.057612 – ident: e_1_2_7_48_2 doi: 10.1212/WNL.0b013e3181af79e5 – ident: e_1_2_7_72_2 doi: 10.1097/01.mlr.0000163645.41407.09 – ident: e_1_2_7_37_2 doi: 10.1002/ana.21904 – ident: e_1_2_7_3_2 doi: 10.1016/S1474-4422(09)70299-6 – ident: e_1_2_7_20_2 doi: 10.1212/WNL.0b013e3181e8e8b8 – ident: e_1_2_7_33_2 doi: 10.1001/archneur.65.11.1509 – ident: e_1_2_7_14_2 doi: 10.1148/radiology.172.2.2748838 – ident: e_1_2_7_69_2 doi: 10.1017/S1355617701755105 – ident: e_1_2_7_29_2 doi: 10.3233/JAD-2009-1227 – ident: e_1_2_7_56_2 doi: 10.1212/WNL.55.1.134 – ident: e_1_2_7_7_2 doi: 10.1093/brain/awp062 – ident: e_1_2_7_11_2 doi: 10.1118/1.3116776 – ident: e_1_2_7_15_2 doi: 10.1021/jm030026b – ident: e_1_2_7_27_2 doi: 10.1212/01.wnl.0000219668.47116.e6 – ident: e_1_2_7_66_2 doi: 10.1093/brain/awq277 – ident: e_1_2_7_40_2 doi: 10.1002/ana.22248 – ident: e_1_2_7_45_2 doi: 10.1001/archneurol.2009.316 – ident: e_1_2_7_39_2 doi: 10.1016/j.neuropsychologia.2011.04.012 – ident: e_1_2_7_59_2 doi: 10.1212/01.wnl.0000271090.28148.24 – ident: e_1_2_7_49_2 doi: 10.1002/ana.21953 – ident: e_1_2_7_61_2 doi: 10.1002/ana.20318 – ident: e_1_2_7_67_2 doi: 10.1016/j.neuroimage.2007.09.073 – ident: e_1_2_7_26_2 doi: 10.1002/1531-8249(199903)45:3<358::AID-ANA12>3.0.CO;2-X – ident: e_1_2_7_9_2 doi: 10.1212/WNL.0b013e3181f11d85 – ident: e_1_2_7_28_2 doi: 10.1212/WNL.55.3.370 – ident: e_1_2_7_50_2 doi: 10.1093/cercor/bhn113 – ident: e_1_2_7_13_2 doi: 10.1016/S0896-6273(02)00569-X – ident: e_1_2_7_10_2 doi: 10.1016/j.jalz.2010.03.004 – ident: e_1_2_7_46_2 doi: 10.1002/ana.22315 – ident: e_1_2_7_43_2 doi: 10.1001/archneur.63.7.936 – ident: e_1_2_7_18_2 doi: 10.1093/brain/awm336 – ident: e_1_2_7_36_2 doi: 10.1212/WNL.0b013e3181d3e3e9 – ident: e_1_2_7_34_2 doi: 10.2967/jnumed.108.058529 – ident: e_1_2_7_4_2 doi: 10.1212/01.WNL.0000115115.98960.37 – ident: e_1_2_7_24_2 doi: 10.1212/01.wnl.0000261919.22630.ea – ident: e_1_2_7_60_2 doi: 10.1212/01.WNL.0000118211.78503.F5 – ident: e_1_2_7_64_2 doi: 10.1001/jama.292.23.2901 – ident: e_1_2_7_47_2 doi: 10.1002/ana.21559 – ident: e_1_2_7_53_2 doi: 10.1002/ana.22333 – ident: e_1_2_7_65_2 doi: 10.1001/archneurol.2009.27 – ident: e_1_2_7_73_2 doi: 10.1001/jama.290.12.1624 – ident: e_1_2_7_21_2 doi: 10.1002/ana.21610 – ident: e_1_2_7_62_2 doi: 10.1177/0891988705281872 – volume: 46 start-page: 1959 year: 2005 ident: e_1_2_7_19_2 article-title: Simplified quantification of Pittsburgh compound B amyloid imaging PET studies: a comparative analysis publication-title: J Nucl Med – ident: e_1_2_7_71_2 doi: 10.1093/brain/awq154 – ident: e_1_2_7_41_2 doi: 10.1016/j.jalz.2010.03.003 – ident: e_1_2_7_2_2 doi: 10.1016/j.jalz.2011.03.003 – ident: e_1_2_7_55_2 doi: 10.1148/radiol.11101637 – ident: e_1_2_7_23_2 doi: 10.1212/01.wnl.0000324924.91351.7d – ident: e_1_2_7_51_2 doi: 10.1002/emmm.200900048 – ident: e_1_2_7_12_2 – ident: e_1_2_7_63_2 doi: 10.1002/ana.21706 – ident: e_1_2_7_6_2 doi: 10.1038/nature08538 – ident: e_1_2_7_54_2 doi: 10.1371/journal.pone.0012853 – ident: e_1_2_7_5_2 doi: 10.1093/brain/awn320 – ident: e_1_2_7_25_2 doi: 10.1093/jnen/62.11.1087 – ident: e_1_2_7_52_2 doi: 10.1212/WNL.0b013e3182166e96 – ident: e_1_2_7_32_2 doi: 10.1016/j.neurobiolaging.2010.04.007 – volume: 132 start-page: 1067 issue: 4 year: 2009 ident: e_1_2_7_57_2 article-title: MRI of hippocampal volume loss in early Alzheimer's disease in relation to ApoE genotype and biomarkers publication-title: Brain doi: 10.1093/brain/awp007 – ident: e_1_2_7_70_2 doi: 10.1001/archneurol.2009.272 – ident: e_1_2_7_30_2 doi: 10.1002/ana.20009 – ident: e_1_2_7_31_2 doi: 10.1212/01.wnl.0000228230.26044.a4 – ident: e_1_2_7_8_2 doi: 10.1159/000115751 – ident: e_1_2_7_16_2 doi: 10.1038/sj.jcbfm.9600146 – ident: e_1_2_7_42_2 doi: 10.1056/NEJM199603213341202 – ident: e_1_2_7_22_2 doi: 10.1016/j.neuroimage.2008.05.012 – ident: e_1_2_7_38_2 doi: 10.1001/archneurol.2009.269 – ident: e_1_2_7_58_2 doi: 10.1002/ana.21208 – ident: e_1_2_7_35_2 doi: 10.1001/archneurol.2011.123 – ident: e_1_2_7_44_2 doi: 10.1016/j.neurobiolaging.2008.02.007 – ident: e_1_2_7_68_2 doi: 10.1016/j.neuroimage.2011.01.049 – reference: 18403055 - Neurobiol Aging. 2009 Dec;30(12):1895-901 – reference: 15037694 - Neurology. 2004 Mar 23;62(6):925-31 – reference: 17502554 - Neurology. 2007 May 15;68(20):1718-25 – reference: 21514248 - Alzheimers Dement. 2011 May;7(3):280-92 – reference: 18259084 - Neuroepidemiology. 2008;30(1):58-69 – reference: 19042931 - Brain. 2009 May;132(Pt 5):1310-23 – reference: 19829371 - Nature. 2009 Oct 15;461(7266):916-22 – reference: 20083042 - Lancet Neurol. 2010 Jan;9(1):119-28 – reference: 21181717 - Ann Neurol. 2010 Dec;68(6):825-34 – reference: 21437929 - Ann Neurol. 2011 Jun;69(6):1032-42 – reference: 11832223 - Neuron. 2002 Jan 31;33(3):341-55 – reference: 15944649 - J Cereb Blood Flow Metab. 2005 Nov;25(11):1528-47 – reference: 19251758 - Brain. 2009 Apr;132(Pt 4):1067-77 – reference: 18263627 - Brain. 2008 Mar;131(Pt 3):665-80 – reference: 20008651 - Arch Neurol. 2009 Dec;66(12):1476-81 – reference: 20142530 - Arch Neurol. 2010 Feb;67(2):217-23 – reference: 15562458 - Ann Neurol. 2005 Jan;57(1):98-103 – reference: 19339253 - Brain. 2009 May;132(Pt 5):1355-65 – reference: 12801237 - J Med Chem. 2003 Jun 19;46(13):2740-54 – reference: 15598922 - JAMA. 2004 Dec 15;292(23):2901-8 – reference: 20592257 - Neurology. 2010 Jul 20;75(3):230-8 – reference: 17568013 - Neurology. 2007 Dec 11;69(24):2197-204 – reference: 20373347 - Ann Neurol. 2010 Mar;67(3):353-64 – reference: 20451870 - Alzheimers Dement. 2010 May;6(3):221-9 – reference: 14506122 - JAMA. 2003 Sep 24;290(12):1624-32 – reference: 21276856 - Neuroimage. 2011 May 1;56(1):52-60 – reference: 16801647 - Neurology. 2006 Jun 27;66(12):1837-44 – reference: 20451869 - Alzheimers Dement. 2010 May;6(3):212-20 – reference: 18632739 - Cereb Cortex. 2009 Mar;19(3):497-510 – reference: 19296504 - Ann Neurol. 2009 Apr;65(4):403-13 – reference: 10891924 - Neurology. 2000 Jul 12;55(1):134-6 – reference: 21490323 - Neurology. 2011 Apr 19;76(16):1395-402 – reference: 19260027 - Ann Neurol. 2009 Feb;65(2):176-83 – reference: 19743450 - Ann Neurol. 2009 Aug;66(2):200-8 – reference: 20820000 - Neurology. 2010 Sep 7;75(10):889-97 – reference: 11459114 - J Int Neuropsychol Soc. 2001 Jul;7(5):631-9 – reference: 18572417 - Neuroimage. 2008 Aug 15;42(2):559-67 – reference: 15908849 - Med Care. 2005 Jun;43(6):551-7 – reference: 18765650 - Neurology. 2008 Sep 2;71(10):743-9 – reference: 16894106 - Neurology. 2006 Aug 8;67(3):446-52 – reference: 16306244 - J Geriatr Psychiatry Neurol. 2005 Dec;18(4):224-7 – reference: 20935035 - Brain. 2010 Nov;133(11):3336-48 – reference: 17879383 - Ann Neurol. 2007 Oct;62(4):406-13 – reference: 21670386 - Arch Neurol. 2011 Oct;68(10):1257-66 – reference: 16831961 - Arch Neurol. 2006 Jul;63(7):936-9 – reference: 19223409 - J Nucl Med. 2009 Mar;50(3):348-55 – reference: 18054253 - Neuroimage. 2008 Feb 1;39(3):1186-97 – reference: 14656067 - J Neuropathol Exp Neurol. 2003 Nov;62(11):1087-95 – reference: 20886094 - PLoS One. 2010;5(9):e12853 – reference: 21529702 - Neuropsychologia. 2011 Jul;49(9):2384-90 – reference: 19273747 - Arch Neurol. 2009 Mar;66(3):300-5 – reference: 20008650 - Arch Neurol. 2009 Dec;66(12):1469-75 – reference: 19749406 - J Alzheimers Dis. 2009;18(3):691-701 – reference: 14991808 - Ann Neurol. 2004 Mar;55(3):306-19 – reference: 21467255 - Radiology. 2011 Jun;259(3):844-51 – reference: 20049742 - EMBO Mol Med. 2009 Nov;1(8-9):371-80 – reference: 20472326 - Neurobiol Aging. 2010 Aug;31(8):1275-83 – reference: 20373342 - Ann Neurol. 2010 Mar;67(3):308-16 – reference: 15079015 - Neurology. 2004 Apr 13;62(7):1148-55 – reference: 16330558 - J Nucl Med. 2005 Dec;46(12):1959-72 – reference: 20147655 - Neurology. 2010 Mar 9;74(10):807-15 – reference: 19610308 - Med Phys. 2009 Jun;36(6):2193-205 – reference: 8592548 - N Engl J Med. 1996 Mar 21;334(12):752-8 – reference: 10072051 - Ann Neurol. 1999 Mar;45(3):358-68 – reference: 21280088 - Ann Neurol. 2011 Jan;69(1):181-92 – reference: 10932270 - Neurology. 2000 Aug 8;55(3):370-6 – reference: 20591858 - Brain. 2010 Aug;133(Pt 8):2196-209 – reference: 19443597 - J Nucl Med. 2009 Jun;50(6):878-86 – reference: 2748838 - Radiology. 1989 Aug;172(2):549-54 – reference: 19001171 - Arch Neurol. 2008 Nov;65(11):1509-17 – reference: 19636048 - Neurology. 2009 Jul 28;73(4):287-93 |
SSID | ssj0009610 |
Score | 2.574018 |
Snippet | Objective:
A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for... A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for preclinical... Objective: A workgroup commissioned by the Alzheimer's Association (AA) and the National Institute on Aging (NIA) recently published research criteria for... |
SourceID | proquest pubmed pascalfrancis crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 765 |
SubjectTerms | Aged Aged, 80 and over Alzheimer Disease - diagnosis Aniline Compounds - standards Biological and medical sciences Biomarkers Brain - diagnostic imaging Cognition Disorders - diagnosis Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Disease Progression Female Fluorodeoxyglucose F18 - standards Humans Longitudinal Studies Male Medical sciences Mental Status Schedule National Institute on Aging (U.S.) - standards Neurodegeneration Neurology Neuropsychological Tests Positron-Emission Tomography Thiazoles - standards United States |
Title | An operational approach to National Institute on Aging-Alzheimer's Association criteria for preclinical Alzheimer disease |
URI | https://api.istex.fr/ark:/67375/WNG-TSB25X3M-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fana.22628 https://www.ncbi.nlm.nih.gov/pubmed/22488240 https://www.proquest.com/docview/1516475749 https://www.proquest.com/docview/1021980786 https://www.proquest.com/docview/1520379720 |
Volume | 71 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEG6WFcSLb93ourQiupfMJp1-pPEUF9dFmDnoLs5BaLqTDsquyTAPkPXif_Af-kusymscWUW8DZlqkq5UVb6kqr4i5CkXVvkCHMmmmoVcMB5aJ5OwUGUitSvBAbF3eDyRx6f8zVRMt8iLvhem5YcYPrihZzTxGh3cusXBmjTUVnYE2IFhoy_WaiEgerumjtKyYSLANFso4oT3rEIROxhWbjyLrqBav2BtpF2Aesp2rsVlwHMTxzYPoqMb5EO_hbb-5Gy0WrpRfvEbu-N_7vEmud4BVJq1FnWLbPnqNrk67lLwd8jXrKL1zM-7j4i0JyWny5pO-oNDCQKtK5rhHKQf375n5xcf_afPfv58QX-xCgpxCwmjLQX8TGcQgbtmTTosoF0a6S45PXp1cngcdhMcwlywKA0xqek4z1UqC1EqK7mDgIZsEY6zmFtdYg9EFKdOs0JIrzzPS2s1vAUKH5dxco9sV3XldwiF96AiLbjkUha80KWOEhs7KwuAhGWkWED2-3tp8o7eHKdsnJuWmJkZUKZplBmQJ4PorOX0uEzoWWMQg4Sdn2ERnBLm_eS1OXn3kolpMjaHAdnbsJhhAVL_w_aigOz2JmS6ALEwALQkV0JxHZDHw9_g2pivsZWvVyAD-EvjPAD5FxnQc6K0YnCa-615ri-AQXRmeAH7jZH9ebMmm2TNjwf_LvqQXAPwyNqyuV2yvZyv_CMAaEu313jiT2G0NUw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVgIuvB-BUgxC0Eu2iePYscQlVJQFujnAVt0LspzEEaglWe1DQuXCf-Af8ksY57UsKghxizZjJZ6dmXz2jL8BeMJCLUyOjqQjSV0WUubqlAduLoqAy7RAB7Rnh0cJHx6xN5NwsgHPu7MwDT9Ev-FmPaOO19bB7Yb03oo1VJd6gOCBRhdgy3b0rhdU71bkUZLXXAQ20ebiXdbxCnl0rx-69jXasor9Yqsj9RwVVDSdLc6DnutItv4UHVyFD90kmgqUk8FykQ6ys9_4Hf93ltfgSotRSdwY1XXYMOUNuDhqs_A34WtckmpqZu0-Iul4ycmiIkn3Y1-FQKqSxLYV0o9v3-PTs4_m02czezYnvxgGwdBlOaM1QQhNphiE2_OapB9A2kzSLTg6eDneH7ptEwc3C6kXuTavmTKWiYjnYSE0ZynGNEsYkTLqMy0LewzC86NU0jzkRhiWFVpLXAiGxi_84DZsllVp7gLBpVAe5YwzznOWy0J6gfZTzXNEhYUnqAO73Z-pspbh3DbaOFUNNzNVqExVK9OBx73otKH1OE_oaW0RvYSendg6OBGq4-SVGr9_QcNJMFL7DuysmUw_wLL_4_Q8B7Y7G1JtjJgrxFqciVAw6cCj_jZ6t03Z6NJUS5RBCCZtSwD-FxnUcyCkoPiYO419rl6AYoCm9gV2ayv782RVnMT1xb1_F30Il4bj0aE6fJ28vQ-XEUvSpopuGzYXs6V5gHhtke7UbvkTlFo5Zw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELZKK1W8cB-BUgxC0JdsE8dHLJ5Cy1KOjRC06j4gWU7sCNSSrPaQUHnhP_AP-SWMcy2LCkK8RclYiSczk8-Z8TcIPaJMC2vAkXQsiU8Zob7OeOQbUURcZgU4oNs7PEr5wRF9NWbjNfS02wvT8EP0P9ycZ9Tx2jn4xBS7S9JQXeoBYAcSX0AblAexM-n9d0vuKMlrKgKXZ_NZGNGOViggu_3QlY_RhtPrF1ccqWegn6JpbHEe8lwFsvWXaHgZfejm0BSgnAwW82yQn_1G7_ifk7yCLrUIFSeNSV1Fa7a8hjZHbQ7-OvqalLia2Gn7FxF3rOR4XuG0O9nXIOCqxIlrhPTj2_fk9Oyj_fTZTp_M8C9mgSFwOcZojQFA4wmE4Ha3Ju4H4DaPdAMdDZ8f7h34bQsHP2ckiH2X1cwozUXMDSuE5jSDiOboIjJKQqpl4TZBBGGcSWIYt8LSvNBawjKQ2bAIo5tovaxKexthWAiZ2FBOOTfUyEIGkQ4zzQ1gwiIQxEM73btUectv7tpsnKqGmZkoUKaqlemhh73opCH1OE_ocW0QvYSenrgqOMHUcfpCHb5_Rtg4Gqk9D22vWEw_wHH_w_QCD211JqTaCDFTgLQ4FUxQ6aEH_WXwbZew0aWtFiADAEy6hgD8LzKg50hIQeA2txrzXD4AgfBM3APs1Eb258mqJE3qgzv_Lnofbb7dH6o3L9PXd9FFAJKkKaHbQuvz6cLeA7A2z7Zrp_wJ3Qo4Hw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+operational+approach+to+National+Institute+on+Aging%E2%80%93Alzheimer%27s+Association+criteria+for+preclinical+Alzheimer+disease&rft.jtitle=Annals+of+neurology&rft.au=Jack%2C+Clifford+R.&rft.au=Knopman%2C+David+S.&rft.au=Weigand%2C+Stephen+D.&rft.au=Wiste%2C+Heather+J.&rft.date=2012-06-01&rft.issn=0364-5134&rft.eissn=1531-8249&rft.volume=71&rft.issue=6&rft.spage=765&rft.epage=775&rft_id=info:doi/10.1002%2Fana.22628&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ana_22628 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon |