Tumor Promotion by Intratumoral Plasmacytoid Dendritic Cells Is Reversed by TLR7 Ligand Treatment
Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors represent an independent prognostic factor associated with poor outcome. To understand this negative impact of tumor-associated pDC (TApDC),...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 73; no. 15; pp. 4629 - 4640 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.08.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors represent an independent prognostic factor associated with poor outcome. To understand this negative impact of tumor-associated pDC (TApDC), we developed an orthotopic murine mammary tumor model that closely mimics the human pathology, including pDC and regulatory T cell (Treg) infiltration. We showed that TApDC are mostly immature and maintain their ability to internalize antigens in vivo and to activate CD4+ T cells. Most importantly, TApDC were specifically altered for cytokine production in response to Toll-like receptor (TLR)–9 ligands in vitro while preserving unaltered response to TLR7 ligands (TLR7L). In vivo pDC depletion delayed tumor growth, showing that TApDC provide an immune-subversive environment, most likely through Treg activation, thus favoring tumor progression. However, in vivo intratumoral administration of TLR7L led to TApDC activation and displayed a potent curative effect. Depletion of pDC and type I IFN neutralization prevented TLR7L antitumoral effect. Our results establish a direct contribution of TApDC to primary breast tumor progression and rationalize the application of TLR7 ligands to restore TApDC activation in breast cancer. Cancer Res; 73(15); 4629–40. ©2013 AACR. |
---|---|
AbstractList | Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors represent an independent prognostic factor associated with poor outcome. To understand this negative impact of tumor-associated pDC (TApDC), we developed an orthotopic murine mammary tumor model that closely mimics the human pathology, including pDC and regulatory T cell (Treg) infiltration. We showed that TApDC are mostly immature and maintain their ability to internalize antigens in vivo and to activate CD4 þ T cells. Most importantly, TApDC were specifically altered for cytokine production in response to Toll-like receptor (TLR)-9 ligands in vitro while preserving unaltered response to TLR7 ligands (TLR7L). In vivo pDC depletion delayed tumor growth, showing that TApDC provide an immunesubversive environment, most likely through Treg activation, thus favoring tumor progression. However, in vivo intratumoral administration of TLR7L led to TApDC activation and displayed a potent curative effect. Depletion of pDC and type I IFN neutralization prevented TLR7L antitumoral effect. Our results establish a direct contribution of TApDC to primary breast tumor progression and rationalize the application of TLR7 ligands to restore TApDC activation in breast cancer. Cancer Res; 73(15); 4629-40. Ó2013 AACR. Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors represent an independent prognostic factor associated with poor outcome. To understand this negative impact of tumor-associated pDC (TApDC), we developed an orthotopic murine mammary tumor model that closely mimics the human pathology, including pDC and regulatory T cell (Treg) infiltration. We showed that TApDC are mostly immature and maintain their ability to internalize antigens in vivo and to activate CD4(+) T cells. Most importantly, TApDC were specifically altered for cytokine production in response to Toll-like receptor (TLR)-9 ligands in vitro while preserving unaltered response to TLR7 ligands (TLR7L). In vivo pDC depletion delayed tumor growth, showing that TApDC provide an immune-subversive environment, most likely through Treg activation, thus favoring tumor progression. However, in vivo intratumoral administration of TLR7L led to TApDC activation and displayed a potent curative effect. Depletion of pDC and type I IFN neutralization prevented TLR7L antitumoral effect. Our results establish a direct contribution of TApDC to primary breast tumor progression and rationalize the application of TLR7 ligands to restore TApDC activation in breast cancer. Cancer Res; 73(15); 4629-40. ©2013 AACR.Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors represent an independent prognostic factor associated with poor outcome. To understand this negative impact of tumor-associated pDC (TApDC), we developed an orthotopic murine mammary tumor model that closely mimics the human pathology, including pDC and regulatory T cell (Treg) infiltration. We showed that TApDC are mostly immature and maintain their ability to internalize antigens in vivo and to activate CD4(+) T cells. Most importantly, TApDC were specifically altered for cytokine production in response to Toll-like receptor (TLR)-9 ligands in vitro while preserving unaltered response to TLR7 ligands (TLR7L). In vivo pDC depletion delayed tumor growth, showing that TApDC provide an immune-subversive environment, most likely through Treg activation, thus favoring tumor progression. However, in vivo intratumoral administration of TLR7L led to TApDC activation and displayed a potent curative effect. Depletion of pDC and type I IFN neutralization prevented TLR7L antitumoral effect. Our results establish a direct contribution of TApDC to primary breast tumor progression and rationalize the application of TLR7 ligands to restore TApDC activation in breast cancer. Cancer Res; 73(15); 4629-40. ©2013 AACR. Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors represent an independent prognostic factor associated with poor outcome. To understand this negative impact of tumor-associated pDC (TApDC), we developed an orthotopic murine mammary tumor model that closely mimics the human pathology, including pDC and regulatory T cell (Treg) infiltration. We showed that TApDC are mostly immature and maintain their ability to internalize antigens in vivo and to activate CD4(+) T cells. Most importantly, TApDC were specifically altered for cytokine production in response to Toll-like receptor (TLR)-9 ligands in vitro while preserving unaltered response to TLR7 ligands (TLR7L). In vivo pDC depletion delayed tumor growth, showing that TApDC provide an immune-subversive environment, most likely through Treg activation, thus favoring tumor progression. However, in vivo intratumoral administration of TLR7L led to TApDC activation and displayed a potent curative effect. Depletion of pDC and type I IFN neutralization prevented TLR7L antitumoral effect. Our results establish a direct contribution of TApDC to primary breast tumor progression and rationalize the application of TLR7 ligands to restore TApDC activation in breast cancer. Cancer Res; 73(15); 4629-40. ©2013 AACR. This study suggests a new use in breast cancer treatment for synthetic ligands of TLR7 like imiquimod that are used widely as immunomodulators in clinic. |
Author | Sanlaville, Amélien Sisirak, Vanja Dubois, Bertrand Bendriss-Vermare, Nathalie Poujol, Dominique Blay, Jean-Yves Goutagny, Nadège Vlach, Jaromir Le Mercier, Isabelle Durand, Isabelle Caux, Christophe Puisieux, Isabelle Treilleux, Isabelle Gobert, Michael Marvel, Jacqueline |
Author_xml | – sequence: 1 givenname: Isabelle surname: Le Mercier fullname: Le Mercier, Isabelle – sequence: 2 givenname: Dominique surname: Poujol fullname: Poujol, Dominique – sequence: 3 givenname: Amélien surname: Sanlaville fullname: Sanlaville, Amélien – sequence: 4 givenname: Vanja surname: Sisirak fullname: Sisirak, Vanja – sequence: 5 givenname: Michael surname: Gobert fullname: Gobert, Michael – sequence: 6 givenname: Isabelle surname: Durand fullname: Durand, Isabelle – sequence: 7 givenname: Bertrand surname: Dubois fullname: Dubois, Bertrand – sequence: 8 givenname: Isabelle surname: Treilleux fullname: Treilleux, Isabelle – sequence: 9 givenname: Jacqueline surname: Marvel fullname: Marvel, Jacqueline – sequence: 10 givenname: Jaromir surname: Vlach fullname: Vlach, Jaromir – sequence: 11 givenname: Jean-Yves surname: Blay fullname: Blay, Jean-Yves – sequence: 12 givenname: Nathalie surname: Bendriss-Vermare fullname: Bendriss-Vermare, Nathalie – sequence: 13 givenname: Christophe surname: Caux fullname: Caux, Christophe – sequence: 14 givenname: Isabelle surname: Puisieux fullname: Puisieux, Isabelle – sequence: 15 givenname: Nadège surname: Goutagny fullname: Goutagny, Nadège |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27610183$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23722543$$D View this record in MEDLINE/PubMed https://hal.science/hal-03045746$$DView record in HAL |
BookMark | eNqFkk9v1DAQxS1URLeFjwDyBakcUjyxHSfitFr-dKUIqmrv1sR2wCiJi-2ttN-eRLstEgc4WTP6vbHH712QsylMjpDXwK4BZP2eMVYXUqjyerP-WkBZcCbrZ2QFkteFEkKekdUTc04uUvo5lxKYfEHOS67KUgq-IrjbjyHS2xjGkH2YaHeg2ylHzEsfB3o7YBrRHHLwln50k40-e0M3bhgS3SZ65x5cTM4uwl17p2jrv-Nk6S46zKOb8kvyvMchuVen85LsPn_abW6K9tuX7WbdFkZCkwtklWSSSwW2Yr2Buqmg641pXGkE6yqp0HS1RCuUbZzCsuPWuL6ad2KoLL8k745jf-Cg76MfMR50QK9v1q1eeowzIZWoHmBmr47sfQy_9i5lPfpk5o1wcmGfNEgJFWcNsP-jApTkvBTVjL45oftudPbpEY-fPQNvTwAmg0MfcTI-_eFUBQzqhftw5EwMKUXXa-MzLu7MvvhBA9NLBPRir17s1XMENJR6icCsln-pHy_4t-43eqOyMg |
CODEN | CNREA8 |
CitedBy_id | crossref_primary_10_1080_2162402X_2015_1008355 crossref_primary_10_1186_s12951_020_0584_x crossref_primary_10_1016_j_lfs_2022_120466 crossref_primary_10_3389_fimmu_2020_00924 crossref_primary_10_3389_fendo_2021_785050 crossref_primary_10_1016_j_jconrel_2018_10_008 crossref_primary_10_1016_j_colsurfa_2019_06_023 crossref_primary_10_1002_adhm_201801320 crossref_primary_10_1186_s13058_019_1155_7 crossref_primary_10_3389_fimmu_2021_609762 crossref_primary_10_3389_fneur_2017_00296 crossref_primary_10_1038_nri3865 crossref_primary_10_18632_oncotarget_14315 crossref_primary_10_1016_j_ctrv_2025_102884 crossref_primary_10_3390_cancers11081082 crossref_primary_10_1016_j_smim_2020_101410 crossref_primary_10_1080_14728222_2022_2170779 crossref_primary_10_3389_fimmu_2024_1393451 crossref_primary_10_3390_cancers11050628 crossref_primary_10_2217_imt_14_75 crossref_primary_10_1158_0008_5472_CAN_20_2990 crossref_primary_10_15252_embj_201798836 crossref_primary_10_1016_j_preteyeres_2020_100877 crossref_primary_10_1186_s13046_024_03164_y crossref_primary_10_1038_jid_2014_29 crossref_primary_10_1007_s12282_021_01231_2 crossref_primary_10_1016_j_biomaterials_2021_120792 crossref_primary_10_1080_2162402X_2019_1601480 crossref_primary_10_1080_08820139_2019_1610428 crossref_primary_10_1084_jem_20200264 crossref_primary_10_3389_fimmu_2017_01268 crossref_primary_10_1038_s41568_020_0285_7 crossref_primary_10_1080_08820139_2022_2109486 crossref_primary_10_3390_cells11020222 crossref_primary_10_1016_j_cyto_2024_156842 crossref_primary_10_3389_fimmu_2024_1418025 crossref_primary_10_18632_oncotarget_3204 crossref_primary_10_1016_j_it_2013_10_007 crossref_primary_10_1186_s12863_021_00991_2 crossref_primary_10_3390_cancers13081850 crossref_primary_10_12688_f1000research_14793_1 crossref_primary_10_4049_jimmunol_1403168 crossref_primary_10_1016_j_semcancer_2019_05_002 crossref_primary_10_1158_0008_5472_CAN_17_2719 crossref_primary_10_1097_PPO_0000000000000007 crossref_primary_10_3390_cancers13051037 crossref_primary_10_4161_2162402X_2014_991615 crossref_primary_10_1038_s41573_018_0007_y crossref_primary_10_3389_fimmu_2018_00552 crossref_primary_10_18632_aging_202811 crossref_primary_10_1016_j_cclet_2024_109680 crossref_primary_10_3390_cancers11050651 crossref_primary_10_1039_C8CS00896E crossref_primary_10_4049_jimmunol_1402004 crossref_primary_10_1016_j_critrevonc_2024_104389 crossref_primary_10_1007_s00262_023_03549_6 crossref_primary_10_1038_nrd_2018_169 crossref_primary_10_1136_jitc_2020_001813 crossref_primary_10_3390_cancers12113342 crossref_primary_10_1080_2162402X_2020_1859263 crossref_primary_10_3390_diagnostics11040702 crossref_primary_10_3389_fimmu_2019_00009 crossref_primary_10_1126_scisignal_aad1884 crossref_primary_10_1016_S0001_4079_19_31004_0 crossref_primary_10_1038_s41389_022_00438_y crossref_primary_10_1016_j_advms_2022_09_001 crossref_primary_10_1172_JCI131992 crossref_primary_10_1186_s12951_024_02525_1 crossref_primary_10_3389_fimmu_2021_656364 crossref_primary_10_1038_s41586_019_1593_5 crossref_primary_10_1158_1078_0432_CCR_13_2116 crossref_primary_10_1186_s12865_024_00643_x crossref_primary_10_1007_s12307_016_0186_1 crossref_primary_10_1002_ijc_29389 crossref_primary_10_1038_ncomms13193 crossref_primary_10_3389_fimmu_2024_1360291 crossref_primary_10_3390_cancers13102495 crossref_primary_10_3109_08830185_2015_1096935 crossref_primary_10_1080_2162402X_2015_1100791 crossref_primary_10_1158_0008_5472_CAN_17_2549 crossref_primary_10_1021_acs_bioconjchem_4c00534 crossref_primary_10_1016_j_xcrm_2023_101256 crossref_primary_10_1016_j_jconrel_2019_09_021 crossref_primary_10_3390_cancers11040470 crossref_primary_10_3389_fimmu_2022_1045624 crossref_primary_10_3390_ijms23137325 crossref_primary_10_1016_j_it_2017_11_006 crossref_primary_10_1080_2162402X_2018_1505174 crossref_primary_10_1016_j_it_2016_09_006 crossref_primary_10_1016_j_imbio_2016_06_009 crossref_primary_10_1186_s13045_022_01335_y crossref_primary_10_3389_fimmu_2019_02721 crossref_primary_10_12677_WJCR_2022_121004 crossref_primary_10_1016_j_oraloncology_2019_07_019 crossref_primary_10_1186_s40364_020_00257_6 crossref_primary_10_1038_s41467_018_05784_3 crossref_primary_10_1016_j_immuni_2018_12_027 crossref_primary_10_3390_cells9020417 crossref_primary_10_1038_npjbcancer_2015_25 crossref_primary_10_1158_2326_6066_CIR_15_0112 crossref_primary_10_1038_s41416_021_01692_4 crossref_primary_10_1111_eci_12363 crossref_primary_10_3390_biomedicines5010008 crossref_primary_10_1021_acsami_2c22363 crossref_primary_10_1016_j_bioactmat_2024_01_008 crossref_primary_10_1080_2162402X_2018_1510710 crossref_primary_10_1016_j_neo_2016_07_009 crossref_primary_10_1111_jfd_13506 crossref_primary_10_3390_v13071272 crossref_primary_10_4161_onci_25771 crossref_primary_10_1016_j_banm_2021_02_002 crossref_primary_10_1016_j_coi_2020_08_001 crossref_primary_10_1101_cshperspect_a041324 crossref_primary_10_3389_fimmu_2015_00243 crossref_primary_10_1073_pnas_1521359113 crossref_primary_10_1158_2326_6066_CIR_19_0786 crossref_primary_10_4161_2162402X_2014_988476 crossref_primary_10_1128_jvi_00434_24 crossref_primary_10_1002_smtd_202301005 crossref_primary_10_1016_j_coi_2017_01_002 crossref_primary_10_1007_s12274_019_2341_8 crossref_primary_10_1016_j_biomaterials_2018_02_034 crossref_primary_10_1038_s41423_024_01167_5 crossref_primary_10_1152_physrev_00018_2019 crossref_primary_10_1016_j_molimm_2018_01_014 crossref_primary_10_3389_fimmu_2023_1055671 crossref_primary_10_1016_j_apsb_2019_01_018 crossref_primary_10_1016_j_bioactmat_2024_12_023 crossref_primary_10_1016_j_canlet_2021_09_022 crossref_primary_10_1016_j_imlet_2022_04_002 crossref_primary_10_1021_acsnano_7b09041 crossref_primary_10_3390_cancers12082085 crossref_primary_10_1039_D1NR01155C crossref_primary_10_1016_j_ctrv_2018_10_012 crossref_primary_10_1158_1078_0432_CCR_14_0344 crossref_primary_10_3389_fimmu_2018_03059 crossref_primary_10_3389_fphar_2023_1180794 crossref_primary_10_1002_eji_202149487 crossref_primary_10_4110_in_2019_19_e6 crossref_primary_10_3389_fimmu_2019_00602 crossref_primary_10_1158_0008_5472_CAN_14_1149 crossref_primary_10_3390_molecules28073147 crossref_primary_10_1016_j_biomaterials_2020_120552 crossref_primary_10_1186_s13578_024_01231_7 crossref_primary_10_3389_fimmu_2023_1166487 crossref_primary_10_1089_dna_2020_6087 crossref_primary_10_18632_oncotarget_19531 |
Cites_doi | 10.4049/jimmunol.171.12.6466 10.1158/0008-5472.CAN-08-2360 10.1016/S0198-8859(02)00754-1 10.1158/0008-5472.CAN-12-2409 10.1158/0008-5472.CAN-05-2714 10.1007/s11523-012-0213-1 10.1084/jem.20051696 10.1182/blood-2002-10-3063 10.1016/j.it.2010.07.004 10.1172/JCI61034 10.1016/j.immuni.2008.06.017 10.1016/S0198-8859(02)00753-X 10.1158/0008-5472.CAN-04-4043 10.4049/jimmunol.177.5.3260 10.1084/jem.20070021 10.1038/ni1118 10.1084/jem.192.2.219 10.1016/j.ccr.2009.08.019 10.1002/path.1344 10.1002/ijc.28072 10.1038/nm1201-1339 10.4049/jimmunol.173.7.4433 10.1158/0008-5472.CAN-04-4262 10.1084/jem.20050914 10.1038/nri2358 10.1084/jem.20041399 10.1158/0008-5472.CAN-11-3468 10.1080/08820130600803429 10.1084/jem.20090480 10.4049/jimmunol.178.12.7849 10.1038/nrc1782 10.1038/cgt.2008.91 10.1172/JCI31911 10.1158/0008-5472.CAN-11-0367 10.1158/1078-0432.CCR-04-0684 10.1073/pnas.89.22.10578 10.1016/j.cell.2008.09.016 10.4049/jimmunol.180.9.5862 10.1158/0008-5472.CAN-05-4676 10.1084/jem.20061660 10.1038/ni1141 10.1046/j.1365-2567.2003.01606.x 10.1126/science.1064890 10.1084/jem.20040035 10.4049/jimmunol.1101855 |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2014 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 1XC |
DOI | 10.1158/0008-5472.CAN-12-3058 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts AIDS and Cancer Research Abstracts Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 4640 |
ExternalDocumentID | oai_HAL_hal_03045746v1 23722543 27610183 10_1158_0008_5472_CAN_12_3058 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 UDS W2D W8F WH7 WOQ YKV YZZ .55 .GJ 3O- 8WZ A6W AFFNX AI. C1A D0S IQODW J5H MVM OHT VH1 WHG X7M XJT ZCG ZGI CGR CUY CVF ECM EIF NPM 7X8 7T5 H94 1XC |
ID | FETCH-LOGICAL-c519t-a065053571d60fc18961bfcc9e2c40b657acb85ad47d9e7a2b3dcef60050a7d3 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Wed Jul 02 06:32:36 EDT 2025 Tue Aug 05 11:01:48 EDT 2025 Fri Jul 11 08:05:33 EDT 2025 Mon Jul 21 06:02:02 EDT 2025 Wed Apr 02 07:24:34 EDT 2025 Thu Apr 24 23:09:21 EDT 2025 Tue Jul 01 04:18:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Toll like receptor 7 Dendritic cell Treatment Antigen presenting cell Ligand Intratumoral administration Tumor promotion Plasmacytoid dendritic cell |
Language | English |
License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c519t-a065053571d60fc18961bfcc9e2c40b657acb85ad47d9e7a2b3dcef60050a7d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ORCID | 0000-0001-6241-459X 0000-0003-3070-6533 0000-0003-2438-833X 0000-0002-8771-3585 |
OpenAccessLink | https://aacrjournals.org/cancerres/article-pdf/73/15/4629/2689788/4629.pdf |
PMID | 23722543 |
PQID | 1417533246 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | hal_primary_oai_HAL_hal_03045746v1 proquest_miscellaneous_1551630910 proquest_miscellaneous_1417533246 pubmed_primary_23722543 pascalfrancis_primary_27610183 crossref_citationtrail_10_1158_0008_5472_CAN_12_3058 crossref_primary_10_1158_0008_5472_CAN_12_3058 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-08-01 |
PublicationDateYYYYMMDD | 2013-08-01 |
PublicationDate_xml | – month: 08 year: 2013 text: 2013-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2013 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | Kang (2022061703521870400_bib42) 2007; 178 Drobits (2022061703521870400_bib3) 2012; 122 Gilliet (2022061703521870400_bib7) 2008; 8 Chauhan (2022061703521870400_bib34) 2009; 16 Dharmapuri (2022061703521870400_bib23) 2009; 16 Barrat (2022061703521870400_bib30) 2005; 202 Colombo (2022061703521870400_bib46) 2005; 65 de Heer (2022061703521870400_bib11) 2004; 200 Gobert (2022061703521870400_bib26) 2009; 69 Sharma (2022061703521870400_bib44) 2007; 117 Kuwana (2022061703521870400_bib37) 2002; 63 Blasius (2022061703521870400_bib24) 2006; 177 Sisirak (2022061703521870400_bib20) 2012; 72 Wang (2022061703521870400_bib36) 2006; 66 Wei (2022061703521870400_bib14) 2005; 65 Fonteneau (2022061703521870400_bib9) 2003; 101 Moseman (2022061703521870400_bib41) 2004; 173 Goubier (2022061703521870400_bib12) 2008; 29 Gilliet (2022061703521870400_bib40) 2002; 63 Stary (2022061703521870400_bib21) 2007; 204 Treilleux (2022061703521870400_bib15) 2004; 10 Bilsborough (2022061703521870400_bib38) 2003; 108 Sawant (2022061703521870400_bib35) 2012; 189 Asselin-Paturel (2022061703521870400_bib25) 2003; 171 Hirsch (2022061703521870400_bib28) 2010; 31 Kawai (2022061703521870400_bib8) 2004; 5 Blanco (2022061703521870400_bib10) 2001; 294 Sisirak (2022061703521870400_bib29) 2013; 133 Zou (2022061703521870400_bib18) 2001; 7 Vermi (2022061703521870400_bib16) 2003; 200 Cisse (2022061703521870400_bib33) 2008; 135 Guiducci (2022061703521870400_bib45) 2005; 65 Goutagny (2022061703521870400_bib47) 2012; 7 de Visser (2022061703521870400_bib1) 2006; 6 Liu (2022061703521870400_bib4) 2008; 118 Guy (2022061703521870400_bib22) 1992; 89 Vollmer (2022061703521870400_bib31) 2005; 202 Colonna (2022061703521870400_bib6) 2004; 5 Fugier-Vivier (2022061703521870400_bib13) 2005; 201 Faget (2022061703521870400_bib27) 2012; 72 Labidi-Galy (2022061703521870400_bib19) 2011; 71 Ouabed (2022061703521870400_bib43) 2008; 180 Hartmann (2022061703521870400_bib17) 2003; 63 Ganguly (2022061703521870400_bib32) 2009; 206 Ito (2022061703521870400_bib39) 2007; 204 Fricke (2022061703521870400_bib2) 2006; 35 Kadowaki (2022061703521870400_bib5) 2000; 192 |
References_xml | – volume: 171 start-page: 6466 year: 2003 ident: 2022061703521870400_bib25 article-title: Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody publication-title: J Immunol doi: 10.4049/jimmunol.171.12.6466 – volume: 69 start-page: 2000 year: 2009 ident: 2022061703521870400_bib26 article-title: Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-2360 – volume: 63 start-page: 1156 year: 2002 ident: 2022061703521870400_bib37 article-title: Induction of anergic and regulatory T cells by plasmacytoid dendritic cells and other dendritic cell subsets publication-title: Hum Immunol doi: 10.1016/S0198-8859(02)00754-1 – volume: 72 start-page: 6130 year: 2012 ident: 2022061703521870400_bib27 article-title: ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4+ T cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-12-2409 – volume: 65 start-page: 9113 year: 2005 ident: 2022061703521870400_bib46 article-title: Targeting myelomonocytic cells to revert inflammation-dependent cancer promotion publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-2714 – volume: 7 start-page: 29 year: 2012 ident: 2022061703521870400_bib47 article-title: Targeting pattern recognition receptors in cancer immunotherapy publication-title: Target Oncol doi: 10.1007/s11523-012-0213-1 – volume: 202 start-page: 1575 year: 2005 ident: 2022061703521870400_bib31 article-title: Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8 publication-title: J Exp Med doi: 10.1084/jem.20051696 – volume: 101 start-page: 3520 year: 2003 ident: 2022061703521870400_bib9 article-title: Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity publication-title: Blood doi: 10.1182/blood-2002-10-3063 – volume: 31 start-page: 391 year: 2010 ident: 2022061703521870400_bib28 article-title: Impaired Toll-like receptor 7 and 9 signaling: from chronic viral infections to cancer publication-title: Trends Immunol doi: 10.1016/j.it.2010.07.004 – volume: 122 start-page: 575 year: 2012 ident: 2022061703521870400_bib3 article-title: Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells publication-title: J Clin Invest doi: 10.1172/JCI61034 – volume: 29 start-page: 464 year: 2008 ident: 2022061703521870400_bib12 article-title: Plasmacytoid dendritic cells mediate oral tolerance publication-title: Immunity doi: 10.1016/j.immuni.2008.06.017 – volume: 63 start-page: 1149 year: 2002 ident: 2022061703521870400_bib40 article-title: Human plasmacytoid-derived dendritic cells and the induction of T-regulatory cells publication-title: Hum Immunol doi: 10.1016/S0198-8859(02)00753-X – volume: 65 start-page: 5020 year: 2005 ident: 2022061703521870400_bib14 article-title: Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-4043 – volume: 177 start-page: 3260 year: 2006 ident: 2022061703521870400_bib24 article-title: Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation publication-title: J Immunol doi: 10.4049/jimmunol.177.5.3260 – volume: 204 start-page: 1441 year: 2007 ident: 2022061703521870400_bib21 article-title: Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells publication-title: J Exp Med doi: 10.1084/jem.20070021 – volume: 5 start-page: 1061 year: 2004 ident: 2022061703521870400_bib8 article-title: Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6 publication-title: Nat Immunol doi: 10.1038/ni1118 – volume: 192 start-page: 219 year: 2000 ident: 2022061703521870400_bib5 article-title: Natural interferon alpha/beta-producing cells link innate and adaptive immunity publication-title: J Exp Med doi: 10.1084/jem.192.2.219 – volume: 16 start-page: 309 year: 2009 ident: 2022061703521870400_bib34 article-title: Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.08.019 – volume: 200 start-page: 255 year: 2003 ident: 2022061703521870400_bib16 article-title: Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas publication-title: J Pathol doi: 10.1002/path.1344 – volume: 133 start-page: 771 year: 2013 ident: 2022061703521870400_bib29 article-title: Breast cancer-derived TGF-beta and TNF-alpha compromise IFN-alpha production by tumor-associated plasmacytoid dendritic cells publication-title: Int J Cancer doi: 10.1002/ijc.28072 – volume: 7 start-page: 1339 year: 2001 ident: 2022061703521870400_bib18 article-title: Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells publication-title: Nat Med doi: 10.1038/nm1201-1339 – volume: 173 start-page: 4433 year: 2004 ident: 2022061703521870400_bib41 article-title: Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells publication-title: J Immunol doi: 10.4049/jimmunol.173.7.4433 – volume: 65 start-page: 3437 year: 2005 ident: 2022061703521870400_bib45 article-title: Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-4262 – volume: 202 start-page: 1131 year: 2005 ident: 2022061703521870400_bib30 article-title: Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus publication-title: J Exp Med doi: 10.1084/jem.20050914 – volume: 8 start-page: 594 year: 2008 ident: 2022061703521870400_bib7 article-title: Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases publication-title: Nat Rev Immunol doi: 10.1038/nri2358 – volume: 201 start-page: 373 year: 2005 ident: 2022061703521870400_bib13 article-title: Plasmacytoid precursor dendritic cells facilitate allogeneic hematopoietic stem cell engraftment publication-title: J Exp Med doi: 10.1084/jem.20041399 – volume: 72 start-page: 5188 year: 2012 ident: 2022061703521870400_bib20 article-title: Impaired IFN-alpha production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-3468 – volume: 35 start-page: 459 year: 2006 ident: 2022061703521870400_bib2 article-title: Dendritic cells and tumor microenvironment: a dangerous liaison publication-title: Immunol Invest doi: 10.1080/08820130600803429 – volume: 206 start-page: 1983 year: 2009 ident: 2022061703521870400_bib32 article-title: Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8 publication-title: J Exp Med doi: 10.1084/jem.20090480 – volume: 178 start-page: 7849 year: 2007 ident: 2022061703521870400_bib42 article-title: Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells publication-title: J Immunol doi: 10.4049/jimmunol.178.12.7849 – volume: 6 start-page: 24 year: 2006 ident: 2022061703521870400_bib1 article-title: Paradoxical roles of the immune system during cancer development publication-title: Nat Rev Cancer doi: 10.1038/nrc1782 – volume: 16 start-page: 462 year: 2009 ident: 2022061703521870400_bib23 article-title: An oral TLR7 agonist is a potent adjuvant of DNA vaccination in transgenic mouse tumor models publication-title: Cancer Gene Ther doi: 10.1038/cgt.2008.91 – volume: 117 start-page: 2570 year: 2007 ident: 2022061703521870400_bib44 article-title: Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase publication-title: J Clin Invest doi: 10.1172/JCI31911 – volume: 71 start-page: 5423 year: 2011 ident: 2022061703521870400_bib19 article-title: Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-0367 – volume: 10 start-page: 7466 year: 2004 ident: 2022061703521870400_bib15 article-title: Dendritic cell infiltration and prognosis of early stage breast cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-0684 – volume: 63 start-page: 6478 year: 2003 ident: 2022061703521870400_bib17 article-title: Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer publication-title: Cancer Res – volume: 89 start-page: 10578 year: 1992 ident: 2022061703521870400_bib22 article-title: Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.89.22.10578 – volume: 135 start-page: 37 year: 2008 ident: 2022061703521870400_bib33 article-title: Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development publication-title: Cell doi: 10.1016/j.cell.2008.09.016 – volume: 180 start-page: 5862 year: 2008 ident: 2022061703521870400_bib43 article-title: Differential control of T regulatory cell proliferation and suppressive activity by mature plasmacytoid versus conventional spleen dendritic cells publication-title: J Immunol doi: 10.4049/jimmunol.180.9.5862 – volume: 66 start-page: 4987 year: 2006 ident: 2022061703521870400_bib36 article-title: Regulatory T cells and Toll-like receptors in cancer therapy publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-05-4676 – volume: 204 start-page: 105 year: 2007 ident: 2022061703521870400_bib39 article-title: Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand publication-title: J Exp Med doi: 10.1084/jem.20061660 – volume: 5 start-page: 1219 year: 2004 ident: 2022061703521870400_bib6 article-title: Plasmacytoid dendritic cells in immunity publication-title: Nat Immunol doi: 10.1038/ni1141 – volume: 108 start-page: 481 year: 2003 ident: 2022061703521870400_bib38 article-title: Mucosal CD8alpha+ DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties publication-title: Immunology doi: 10.1046/j.1365-2567.2003.01606.x – volume: 118 start-page: 1165 year: 2008 ident: 2022061703521870400_bib4 article-title: Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice publication-title: J Clin Invest – volume: 294 start-page: 1540 year: 2001 ident: 2022061703521870400_bib10 article-title: Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus publication-title: Science doi: 10.1126/science.1064890 – volume: 200 start-page: 89 year: 2004 ident: 2022061703521870400_bib11 article-title: Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen publication-title: J Exp Med doi: 10.1084/jem.20040035 – volume: 189 start-page: 4258 year: 2012 ident: 2022061703521870400_bib35 article-title: Depletion of plasmacytoid dendritic cells inhibits tumor growth and prevents bone metastasis of breast cancer cells publication-title: J Immunol doi: 10.4049/jimmunol.1101855 |
SSID | ssj0005105 |
Score | 2.4932926 |
Snippet | Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors... This study suggests a new use in breast cancer treatment for synthetic ligands of TLR7 like imiquimod that are used widely as immunomodulators in clinic. |
SourceID | hal proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4629 |
SubjectTerms | Animals Antineoplastic agents Biological and medical sciences Cancer Dendritic Cells - immunology Dendritic Cells - metabolism Disease Models, Animal Female Immunology Immunotherapy Life Sciences Ligands Lymphocyte Activation - immunology Lymphocyte Culture Test, Mixed Lymphocytes, Tumor-Infiltrating - immunology Lymphocytes, Tumor-Infiltrating - metabolism Mammary Neoplasms, Experimental - immunology Mammary Neoplasms, Experimental - metabolism Medical sciences Membrane Glycoproteins - immunology Membrane Glycoproteins - metabolism Mice Mice, Inbred C57BL Mice, Transgenic Pharmacology. Drug treatments T-Lymphocytes, Regulatory - immunology T-Lymphocytes, Regulatory - metabolism Toll-Like Receptor 7 - immunology Toll-Like Receptor 7 - metabolism Tumors |
Title | Tumor Promotion by Intratumoral Plasmacytoid Dendritic Cells Is Reversed by TLR7 Ligand Treatment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23722543 https://www.proquest.com/docview/1417533246 https://www.proquest.com/docview/1551630910 https://hal.science/hal-03045746 |
Volume | 73 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tj5NAEN7UMzEmxvhufbmg8VtDLbAs9GPTeiler2m8au4b2V0W64WDS0svOf-v_8MZFijEqqdfSLtdyrLzMMzMPjtDyDtLqMii0jV9GjkmFSw2fYd65tAW0lfUkbHEgP7JnE0_049n7lmn86PBWtrmoi-_791X8j9ShTaQK-6S_QfJ1n8KDfAZ5AtHkDAcbybj7UW2Rq6_rsWDpmSAwdoc22HuF2AaX3B5nWffkG-cRkVdg95YJcmmF-AOESRlaBt0OfvkgYf-FQPpy4p93jRdx4iPda_MDrQqln81j6PQM0nSb0QVZqAtsJaTBkSw4bi-UWNokW3PdWWvSYa5TTTxW0d6eJrwK9yg2Aq0nmJ4hRea-wtPz3kzWIGFI_wW8aNahWpgr6BTlrdQsQ1bGts3XarL-_TVTkl7VKehrLS4LohSodVt6GTKyrtX5VedH-rXd4fra7KlvmAfxllkdBzo3PLtXN3T0Wm4mByFs2B-3P61Tto9Hc3CFWCqWIz2KLsCJ_22Dd4MFtqYBMc7JlLJtK2uXG40g_G83zualgl1a4UE3nuXfAPPdKyLsfzeWyqspuUDcr90d4yRxu5D0lHpI3LnpCR0PCa8gLBRQ9gQ10YTwkYTwkYNYaOAsBFsjArCeCJC2NAQNmoIPyHLow_L8dQsq36YEryJ3OToNLiO61kRG8TS8ofMErGUQ2VLOhDM9bgUvssj6kVD5XFbOJFUMcNMRtyLnKfkIM1S9ZwYAlzx2IIethtRMWC-cgRjPObQO_KiuEtoNY-hLDPiY2GWJCw8Y9dHZoYf4vSH49E8tOwQp79L-vVplzolzN9OeIs4qPrux0aXHLZkWHe3PYZZ9ZwueVMJNYRXAK7r8VRl2w1475huFzwj9oc-uCDuoHPQJc80InZXcACTLnVe3GScL8nd3YP9ihzk6616DXZ5Lg4LVP8EZ0_ftg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+Promotion+by+Intratumoral+Plasmacytoid+Dendritic+Cells+Is+Reversed+by+TLR7+Ligand+Treatment&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Le+Mercier%2C+Isabelle&rft.au=Poujol%2C+Dominique&rft.au=Sanlaville%2C+A&rft.au=Sisirak%2C+Vanja&rft.date=2013-08-01&rft.pub=American+Association+for+Cancer+Research&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=73&rft.issue=15&rft.spage=4629&rft.epage=4640&rft_id=info:doi/10.1158%2F0008-5472.can-12-3058&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03045746v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |