Tumor Promotion by Intratumoral Plasmacytoid Dendritic Cells Is Reversed by TLR7 Ligand Treatment

Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors represent an independent prognostic factor associated with poor outcome. To understand this negative impact of tumor-associated pDC (TApDC),...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 73; no. 15; pp. 4629 - 4640
Main Authors Le Mercier, Isabelle, Poujol, Dominique, Sanlaville, Amélien, Sisirak, Vanja, Gobert, Michael, Durand, Isabelle, Dubois, Bertrand, Treilleux, Isabelle, Marvel, Jacqueline, Vlach, Jaromir, Blay, Jean-Yves, Bendriss-Vermare, Nathalie, Caux, Christophe, Puisieux, Isabelle, Goutagny, Nadège
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 01.08.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors represent an independent prognostic factor associated with poor outcome. To understand this negative impact of tumor-associated pDC (TApDC), we developed an orthotopic murine mammary tumor model that closely mimics the human pathology, including pDC and regulatory T cell (Treg) infiltration. We showed that TApDC are mostly immature and maintain their ability to internalize antigens in vivo and to activate CD4+ T cells. Most importantly, TApDC were specifically altered for cytokine production in response to Toll-like receptor (TLR)–9 ligands in vitro while preserving unaltered response to TLR7 ligands (TLR7L). In vivo pDC depletion delayed tumor growth, showing that TApDC provide an immune-subversive environment, most likely through Treg activation, thus favoring tumor progression. However, in vivo intratumoral administration of TLR7L led to TApDC activation and displayed a potent curative effect. Depletion of pDC and type I IFN neutralization prevented TLR7L antitumoral effect. Our results establish a direct contribution of TApDC to primary breast tumor progression and rationalize the application of TLR7 ligands to restore TApDC activation in breast cancer. Cancer Res; 73(15); 4629–40. ©2013 AACR.
AbstractList Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors represent an independent prognostic factor associated with poor outcome. To understand this negative impact of tumor-associated pDC (TApDC), we developed an orthotopic murine mammary tumor model that closely mimics the human pathology, including pDC and regulatory T cell (Treg) infiltration. We showed that TApDC are mostly immature and maintain their ability to internalize antigens in vivo and to activate CD4 þ T cells. Most importantly, TApDC were specifically altered for cytokine production in response to Toll-like receptor (TLR)-9 ligands in vitro while preserving unaltered response to TLR7 ligands (TLR7L). In vivo pDC depletion delayed tumor growth, showing that TApDC provide an immunesubversive environment, most likely through Treg activation, thus favoring tumor progression. However, in vivo intratumoral administration of TLR7L led to TApDC activation and displayed a potent curative effect. Depletion of pDC and type I IFN neutralization prevented TLR7L antitumoral effect. Our results establish a direct contribution of TApDC to primary breast tumor progression and rationalize the application of TLR7 ligands to restore TApDC activation in breast cancer. Cancer Res; 73(15); 4629-40. Ó2013 AACR.
Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors represent an independent prognostic factor associated with poor outcome. To understand this negative impact of tumor-associated pDC (TApDC), we developed an orthotopic murine mammary tumor model that closely mimics the human pathology, including pDC and regulatory T cell (Treg) infiltration. We showed that TApDC are mostly immature and maintain their ability to internalize antigens in vivo and to activate CD4(+) T cells. Most importantly, TApDC were specifically altered for cytokine production in response to Toll-like receptor (TLR)-9 ligands in vitro while preserving unaltered response to TLR7 ligands (TLR7L). In vivo pDC depletion delayed tumor growth, showing that TApDC provide an immune-subversive environment, most likely through Treg activation, thus favoring tumor progression. However, in vivo intratumoral administration of TLR7L led to TApDC activation and displayed a potent curative effect. Depletion of pDC and type I IFN neutralization prevented TLR7L antitumoral effect. Our results establish a direct contribution of TApDC to primary breast tumor progression and rationalize the application of TLR7 ligands to restore TApDC activation in breast cancer. Cancer Res; 73(15); 4629-40. ©2013 AACR.Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors represent an independent prognostic factor associated with poor outcome. To understand this negative impact of tumor-associated pDC (TApDC), we developed an orthotopic murine mammary tumor model that closely mimics the human pathology, including pDC and regulatory T cell (Treg) infiltration. We showed that TApDC are mostly immature and maintain their ability to internalize antigens in vivo and to activate CD4(+) T cells. Most importantly, TApDC were specifically altered for cytokine production in response to Toll-like receptor (TLR)-9 ligands in vitro while preserving unaltered response to TLR7 ligands (TLR7L). In vivo pDC depletion delayed tumor growth, showing that TApDC provide an immune-subversive environment, most likely through Treg activation, thus favoring tumor progression. However, in vivo intratumoral administration of TLR7L led to TApDC activation and displayed a potent curative effect. Depletion of pDC and type I IFN neutralization prevented TLR7L antitumoral effect. Our results establish a direct contribution of TApDC to primary breast tumor progression and rationalize the application of TLR7 ligands to restore TApDC activation in breast cancer. Cancer Res; 73(15); 4629-40. ©2013 AACR.
Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors represent an independent prognostic factor associated with poor outcome. To understand this negative impact of tumor-associated pDC (TApDC), we developed an orthotopic murine mammary tumor model that closely mimics the human pathology, including pDC and regulatory T cell (Treg) infiltration. We showed that TApDC are mostly immature and maintain their ability to internalize antigens in vivo and to activate CD4(+) T cells. Most importantly, TApDC were specifically altered for cytokine production in response to Toll-like receptor (TLR)-9 ligands in vitro while preserving unaltered response to TLR7 ligands (TLR7L). In vivo pDC depletion delayed tumor growth, showing that TApDC provide an immune-subversive environment, most likely through Treg activation, thus favoring tumor progression. However, in vivo intratumoral administration of TLR7L led to TApDC activation and displayed a potent curative effect. Depletion of pDC and type I IFN neutralization prevented TLR7L antitumoral effect. Our results establish a direct contribution of TApDC to primary breast tumor progression and rationalize the application of TLR7 ligands to restore TApDC activation in breast cancer. Cancer Res; 73(15); 4629-40. ©2013 AACR.
This study suggests a new use in breast cancer treatment for synthetic ligands of TLR7 like imiquimod that are used widely as immunomodulators in clinic.
Author Sanlaville, Amélien
Sisirak, Vanja
Dubois, Bertrand
Bendriss-Vermare, Nathalie
Poujol, Dominique
Blay, Jean-Yves
Goutagny, Nadège
Vlach, Jaromir
Le Mercier, Isabelle
Durand, Isabelle
Caux, Christophe
Puisieux, Isabelle
Treilleux, Isabelle
Gobert, Michael
Marvel, Jacqueline
Author_xml – sequence: 1
  givenname: Isabelle
  surname: Le Mercier
  fullname: Le Mercier, Isabelle
– sequence: 2
  givenname: Dominique
  surname: Poujol
  fullname: Poujol, Dominique
– sequence: 3
  givenname: Amélien
  surname: Sanlaville
  fullname: Sanlaville, Amélien
– sequence: 4
  givenname: Vanja
  surname: Sisirak
  fullname: Sisirak, Vanja
– sequence: 5
  givenname: Michael
  surname: Gobert
  fullname: Gobert, Michael
– sequence: 6
  givenname: Isabelle
  surname: Durand
  fullname: Durand, Isabelle
– sequence: 7
  givenname: Bertrand
  surname: Dubois
  fullname: Dubois, Bertrand
– sequence: 8
  givenname: Isabelle
  surname: Treilleux
  fullname: Treilleux, Isabelle
– sequence: 9
  givenname: Jacqueline
  surname: Marvel
  fullname: Marvel, Jacqueline
– sequence: 10
  givenname: Jaromir
  surname: Vlach
  fullname: Vlach, Jaromir
– sequence: 11
  givenname: Jean-Yves
  surname: Blay
  fullname: Blay, Jean-Yves
– sequence: 12
  givenname: Nathalie
  surname: Bendriss-Vermare
  fullname: Bendriss-Vermare, Nathalie
– sequence: 13
  givenname: Christophe
  surname: Caux
  fullname: Caux, Christophe
– sequence: 14
  givenname: Isabelle
  surname: Puisieux
  fullname: Puisieux, Isabelle
– sequence: 15
  givenname: Nadège
  surname: Goutagny
  fullname: Goutagny, Nadège
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27610183$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/23722543$$D View this record in MEDLINE/PubMed
https://hal.science/hal-03045746$$DView record in HAL
BookMark eNqFkk9v1DAQxS1URLeFjwDyBakcUjyxHSfitFr-dKUIqmrv1sR2wCiJi-2ttN-eRLstEgc4WTP6vbHH712QsylMjpDXwK4BZP2eMVYXUqjyerP-WkBZcCbrZ2QFkteFEkKekdUTc04uUvo5lxKYfEHOS67KUgq-IrjbjyHS2xjGkH2YaHeg2ylHzEsfB3o7YBrRHHLwln50k40-e0M3bhgS3SZ65x5cTM4uwl17p2jrv-Nk6S46zKOb8kvyvMchuVen85LsPn_abW6K9tuX7WbdFkZCkwtklWSSSwW2Yr2Buqmg641pXGkE6yqp0HS1RCuUbZzCsuPWuL6ad2KoLL8k745jf-Cg76MfMR50QK9v1q1eeowzIZWoHmBmr47sfQy_9i5lPfpk5o1wcmGfNEgJFWcNsP-jApTkvBTVjL45oftudPbpEY-fPQNvTwAmg0MfcTI-_eFUBQzqhftw5EwMKUXXa-MzLu7MvvhBA9NLBPRir17s1XMENJR6icCsln-pHy_4t-43eqOyMg
CODEN CNREA8
CitedBy_id crossref_primary_10_1080_2162402X_2015_1008355
crossref_primary_10_1186_s12951_020_0584_x
crossref_primary_10_1016_j_lfs_2022_120466
crossref_primary_10_3389_fimmu_2020_00924
crossref_primary_10_3389_fendo_2021_785050
crossref_primary_10_1016_j_jconrel_2018_10_008
crossref_primary_10_1016_j_colsurfa_2019_06_023
crossref_primary_10_1002_adhm_201801320
crossref_primary_10_1186_s13058_019_1155_7
crossref_primary_10_3389_fimmu_2021_609762
crossref_primary_10_3389_fneur_2017_00296
crossref_primary_10_1038_nri3865
crossref_primary_10_18632_oncotarget_14315
crossref_primary_10_1016_j_ctrv_2025_102884
crossref_primary_10_3390_cancers11081082
crossref_primary_10_1016_j_smim_2020_101410
crossref_primary_10_1080_14728222_2022_2170779
crossref_primary_10_3389_fimmu_2024_1393451
crossref_primary_10_3390_cancers11050628
crossref_primary_10_2217_imt_14_75
crossref_primary_10_1158_0008_5472_CAN_20_2990
crossref_primary_10_15252_embj_201798836
crossref_primary_10_1016_j_preteyeres_2020_100877
crossref_primary_10_1186_s13046_024_03164_y
crossref_primary_10_1038_jid_2014_29
crossref_primary_10_1007_s12282_021_01231_2
crossref_primary_10_1016_j_biomaterials_2021_120792
crossref_primary_10_1080_2162402X_2019_1601480
crossref_primary_10_1080_08820139_2019_1610428
crossref_primary_10_1084_jem_20200264
crossref_primary_10_3389_fimmu_2017_01268
crossref_primary_10_1038_s41568_020_0285_7
crossref_primary_10_1080_08820139_2022_2109486
crossref_primary_10_3390_cells11020222
crossref_primary_10_1016_j_cyto_2024_156842
crossref_primary_10_3389_fimmu_2024_1418025
crossref_primary_10_18632_oncotarget_3204
crossref_primary_10_1016_j_it_2013_10_007
crossref_primary_10_1186_s12863_021_00991_2
crossref_primary_10_3390_cancers13081850
crossref_primary_10_12688_f1000research_14793_1
crossref_primary_10_4049_jimmunol_1403168
crossref_primary_10_1016_j_semcancer_2019_05_002
crossref_primary_10_1158_0008_5472_CAN_17_2719
crossref_primary_10_1097_PPO_0000000000000007
crossref_primary_10_3390_cancers13051037
crossref_primary_10_4161_2162402X_2014_991615
crossref_primary_10_1038_s41573_018_0007_y
crossref_primary_10_3389_fimmu_2018_00552
crossref_primary_10_18632_aging_202811
crossref_primary_10_1016_j_cclet_2024_109680
crossref_primary_10_3390_cancers11050651
crossref_primary_10_1039_C8CS00896E
crossref_primary_10_4049_jimmunol_1402004
crossref_primary_10_1016_j_critrevonc_2024_104389
crossref_primary_10_1007_s00262_023_03549_6
crossref_primary_10_1038_nrd_2018_169
crossref_primary_10_1136_jitc_2020_001813
crossref_primary_10_3390_cancers12113342
crossref_primary_10_1080_2162402X_2020_1859263
crossref_primary_10_3390_diagnostics11040702
crossref_primary_10_3389_fimmu_2019_00009
crossref_primary_10_1126_scisignal_aad1884
crossref_primary_10_1016_S0001_4079_19_31004_0
crossref_primary_10_1038_s41389_022_00438_y
crossref_primary_10_1016_j_advms_2022_09_001
crossref_primary_10_1172_JCI131992
crossref_primary_10_1186_s12951_024_02525_1
crossref_primary_10_3389_fimmu_2021_656364
crossref_primary_10_1038_s41586_019_1593_5
crossref_primary_10_1158_1078_0432_CCR_13_2116
crossref_primary_10_1186_s12865_024_00643_x
crossref_primary_10_1007_s12307_016_0186_1
crossref_primary_10_1002_ijc_29389
crossref_primary_10_1038_ncomms13193
crossref_primary_10_3389_fimmu_2024_1360291
crossref_primary_10_3390_cancers13102495
crossref_primary_10_3109_08830185_2015_1096935
crossref_primary_10_1080_2162402X_2015_1100791
crossref_primary_10_1158_0008_5472_CAN_17_2549
crossref_primary_10_1021_acs_bioconjchem_4c00534
crossref_primary_10_1016_j_xcrm_2023_101256
crossref_primary_10_1016_j_jconrel_2019_09_021
crossref_primary_10_3390_cancers11040470
crossref_primary_10_3389_fimmu_2022_1045624
crossref_primary_10_3390_ijms23137325
crossref_primary_10_1016_j_it_2017_11_006
crossref_primary_10_1080_2162402X_2018_1505174
crossref_primary_10_1016_j_it_2016_09_006
crossref_primary_10_1016_j_imbio_2016_06_009
crossref_primary_10_1186_s13045_022_01335_y
crossref_primary_10_3389_fimmu_2019_02721
crossref_primary_10_12677_WJCR_2022_121004
crossref_primary_10_1016_j_oraloncology_2019_07_019
crossref_primary_10_1186_s40364_020_00257_6
crossref_primary_10_1038_s41467_018_05784_3
crossref_primary_10_1016_j_immuni_2018_12_027
crossref_primary_10_3390_cells9020417
crossref_primary_10_1038_npjbcancer_2015_25
crossref_primary_10_1158_2326_6066_CIR_15_0112
crossref_primary_10_1038_s41416_021_01692_4
crossref_primary_10_1111_eci_12363
crossref_primary_10_3390_biomedicines5010008
crossref_primary_10_1021_acsami_2c22363
crossref_primary_10_1016_j_bioactmat_2024_01_008
crossref_primary_10_1080_2162402X_2018_1510710
crossref_primary_10_1016_j_neo_2016_07_009
crossref_primary_10_1111_jfd_13506
crossref_primary_10_3390_v13071272
crossref_primary_10_4161_onci_25771
crossref_primary_10_1016_j_banm_2021_02_002
crossref_primary_10_1016_j_coi_2020_08_001
crossref_primary_10_1101_cshperspect_a041324
crossref_primary_10_3389_fimmu_2015_00243
crossref_primary_10_1073_pnas_1521359113
crossref_primary_10_1158_2326_6066_CIR_19_0786
crossref_primary_10_4161_2162402X_2014_988476
crossref_primary_10_1128_jvi_00434_24
crossref_primary_10_1002_smtd_202301005
crossref_primary_10_1016_j_coi_2017_01_002
crossref_primary_10_1007_s12274_019_2341_8
crossref_primary_10_1016_j_biomaterials_2018_02_034
crossref_primary_10_1038_s41423_024_01167_5
crossref_primary_10_1152_physrev_00018_2019
crossref_primary_10_1016_j_molimm_2018_01_014
crossref_primary_10_3389_fimmu_2023_1055671
crossref_primary_10_1016_j_apsb_2019_01_018
crossref_primary_10_1016_j_bioactmat_2024_12_023
crossref_primary_10_1016_j_canlet_2021_09_022
crossref_primary_10_1016_j_imlet_2022_04_002
crossref_primary_10_1021_acsnano_7b09041
crossref_primary_10_3390_cancers12082085
crossref_primary_10_1039_D1NR01155C
crossref_primary_10_1016_j_ctrv_2018_10_012
crossref_primary_10_1158_1078_0432_CCR_14_0344
crossref_primary_10_3389_fimmu_2018_03059
crossref_primary_10_3389_fphar_2023_1180794
crossref_primary_10_1002_eji_202149487
crossref_primary_10_4110_in_2019_19_e6
crossref_primary_10_3389_fimmu_2019_00602
crossref_primary_10_1158_0008_5472_CAN_14_1149
crossref_primary_10_3390_molecules28073147
crossref_primary_10_1016_j_biomaterials_2020_120552
crossref_primary_10_1186_s13578_024_01231_7
crossref_primary_10_3389_fimmu_2023_1166487
crossref_primary_10_1089_dna_2020_6087
crossref_primary_10_18632_oncotarget_19531
Cites_doi 10.4049/jimmunol.171.12.6466
10.1158/0008-5472.CAN-08-2360
10.1016/S0198-8859(02)00754-1
10.1158/0008-5472.CAN-12-2409
10.1158/0008-5472.CAN-05-2714
10.1007/s11523-012-0213-1
10.1084/jem.20051696
10.1182/blood-2002-10-3063
10.1016/j.it.2010.07.004
10.1172/JCI61034
10.1016/j.immuni.2008.06.017
10.1016/S0198-8859(02)00753-X
10.1158/0008-5472.CAN-04-4043
10.4049/jimmunol.177.5.3260
10.1084/jem.20070021
10.1038/ni1118
10.1084/jem.192.2.219
10.1016/j.ccr.2009.08.019
10.1002/path.1344
10.1002/ijc.28072
10.1038/nm1201-1339
10.4049/jimmunol.173.7.4433
10.1158/0008-5472.CAN-04-4262
10.1084/jem.20050914
10.1038/nri2358
10.1084/jem.20041399
10.1158/0008-5472.CAN-11-3468
10.1080/08820130600803429
10.1084/jem.20090480
10.4049/jimmunol.178.12.7849
10.1038/nrc1782
10.1038/cgt.2008.91
10.1172/JCI31911
10.1158/0008-5472.CAN-11-0367
10.1158/1078-0432.CCR-04-0684
10.1073/pnas.89.22.10578
10.1016/j.cell.2008.09.016
10.4049/jimmunol.180.9.5862
10.1158/0008-5472.CAN-05-4676
10.1084/jem.20061660
10.1038/ni1141
10.1046/j.1365-2567.2003.01606.x
10.1126/science.1064890
10.1084/jem.20040035
10.4049/jimmunol.1101855
ContentType Journal Article
Copyright 2014 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
H94
1XC
DOI 10.1158/0008-5472.CAN-12-3058
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
AIDS and Cancer Research Abstracts
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AIDS and Cancer Research Abstracts
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 4640
ExternalDocumentID oai_HAL_hal_03045746v1
23722543
27610183
10_1158_0008_5472_CAN_12_3058
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
UDS
W2D
W8F
WH7
WOQ
YKV
YZZ
.55
.GJ
3O-
8WZ
A6W
AFFNX
AI.
C1A
D0S
IQODW
J5H
MVM
OHT
VH1
WHG
X7M
XJT
ZCG
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
H94
1XC
ID FETCH-LOGICAL-c519t-a065053571d60fc18961bfcc9e2c40b657acb85ad47d9e7a2b3dcef60050a7d3
ISSN 0008-5472
1538-7445
IngestDate Wed Jul 02 06:32:36 EDT 2025
Tue Aug 05 11:01:48 EDT 2025
Fri Jul 11 08:05:33 EDT 2025
Mon Jul 21 06:02:02 EDT 2025
Wed Apr 02 07:24:34 EDT 2025
Thu Apr 24 23:09:21 EDT 2025
Tue Jul 01 04:18:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Toll like receptor 7
Dendritic cell
Treatment
Antigen presenting cell
Ligand
Intratumoral administration
Tumor promotion
Plasmacytoid dendritic cell
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c519t-a065053571d60fc18961bfcc9e2c40b657acb85ad47d9e7a2b3dcef60050a7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ORCID 0000-0001-6241-459X
0000-0003-3070-6533
0000-0003-2438-833X
0000-0002-8771-3585
OpenAccessLink https://aacrjournals.org/cancerres/article-pdf/73/15/4629/2689788/4629.pdf
PMID 23722543
PQID 1417533246
PQPubID 23479
PageCount 12
ParticipantIDs hal_primary_oai_HAL_hal_03045746v1
proquest_miscellaneous_1551630910
proquest_miscellaneous_1417533246
pubmed_primary_23722543
pascalfrancis_primary_27610183
crossref_citationtrail_10_1158_0008_5472_CAN_12_3058
crossref_primary_10_1158_0008_5472_CAN_12_3058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2013
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References Kang (2022061703521870400_bib42) 2007; 178
Drobits (2022061703521870400_bib3) 2012; 122
Gilliet (2022061703521870400_bib7) 2008; 8
Chauhan (2022061703521870400_bib34) 2009; 16
Dharmapuri (2022061703521870400_bib23) 2009; 16
Barrat (2022061703521870400_bib30) 2005; 202
Colombo (2022061703521870400_bib46) 2005; 65
de Heer (2022061703521870400_bib11) 2004; 200
Gobert (2022061703521870400_bib26) 2009; 69
Sharma (2022061703521870400_bib44) 2007; 117
Kuwana (2022061703521870400_bib37) 2002; 63
Blasius (2022061703521870400_bib24) 2006; 177
Sisirak (2022061703521870400_bib20) 2012; 72
Wang (2022061703521870400_bib36) 2006; 66
Wei (2022061703521870400_bib14) 2005; 65
Fonteneau (2022061703521870400_bib9) 2003; 101
Moseman (2022061703521870400_bib41) 2004; 173
Goubier (2022061703521870400_bib12) 2008; 29
Gilliet (2022061703521870400_bib40) 2002; 63
Stary (2022061703521870400_bib21) 2007; 204
Treilleux (2022061703521870400_bib15) 2004; 10
Bilsborough (2022061703521870400_bib38) 2003; 108
Sawant (2022061703521870400_bib35) 2012; 189
Asselin-Paturel (2022061703521870400_bib25) 2003; 171
Hirsch (2022061703521870400_bib28) 2010; 31
Kawai (2022061703521870400_bib8) 2004; 5
Blanco (2022061703521870400_bib10) 2001; 294
Sisirak (2022061703521870400_bib29) 2013; 133
Zou (2022061703521870400_bib18) 2001; 7
Vermi (2022061703521870400_bib16) 2003; 200
Cisse (2022061703521870400_bib33) 2008; 135
Guiducci (2022061703521870400_bib45) 2005; 65
Goutagny (2022061703521870400_bib47) 2012; 7
de Visser (2022061703521870400_bib1) 2006; 6
Liu (2022061703521870400_bib4) 2008; 118
Guy (2022061703521870400_bib22) 1992; 89
Vollmer (2022061703521870400_bib31) 2005; 202
Colonna (2022061703521870400_bib6) 2004; 5
Fugier-Vivier (2022061703521870400_bib13) 2005; 201
Faget (2022061703521870400_bib27) 2012; 72
Labidi-Galy (2022061703521870400_bib19) 2011; 71
Ouabed (2022061703521870400_bib43) 2008; 180
Hartmann (2022061703521870400_bib17) 2003; 63
Ganguly (2022061703521870400_bib32) 2009; 206
Ito (2022061703521870400_bib39) 2007; 204
Fricke (2022061703521870400_bib2) 2006; 35
Kadowaki (2022061703521870400_bib5) 2000; 192
References_xml – volume: 171
  start-page: 6466
  year: 2003
  ident: 2022061703521870400_bib25
  article-title: Mouse strain differences in plasmacytoid dendritic cell frequency and function revealed by a novel monoclonal antibody
  publication-title: J Immunol
  doi: 10.4049/jimmunol.171.12.6466
– volume: 69
  start-page: 2000
  year: 2009
  ident: 2022061703521870400_bib26
  article-title: Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-2360
– volume: 63
  start-page: 1156
  year: 2002
  ident: 2022061703521870400_bib37
  article-title: Induction of anergic and regulatory T cells by plasmacytoid dendritic cells and other dendritic cell subsets
  publication-title: Hum Immunol
  doi: 10.1016/S0198-8859(02)00754-1
– volume: 72
  start-page: 6130
  year: 2012
  ident: 2022061703521870400_bib27
  article-title: ICOS-ligand expression on plasmacytoid dendritic cells supports breast cancer progression by promoting the accumulation of immunosuppressive CD4+ T cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-12-2409
– volume: 65
  start-page: 9113
  year: 2005
  ident: 2022061703521870400_bib46
  article-title: Targeting myelomonocytic cells to revert inflammation-dependent cancer promotion
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-2714
– volume: 7
  start-page: 29
  year: 2012
  ident: 2022061703521870400_bib47
  article-title: Targeting pattern recognition receptors in cancer immunotherapy
  publication-title: Target Oncol
  doi: 10.1007/s11523-012-0213-1
– volume: 202
  start-page: 1575
  year: 2005
  ident: 2022061703521870400_bib31
  article-title: Immune stimulation mediated by autoantigen binding sites within small nuclear RNAs involves Toll-like receptors 7 and 8
  publication-title: J Exp Med
  doi: 10.1084/jem.20051696
– volume: 101
  start-page: 3520
  year: 2003
  ident: 2022061703521870400_bib9
  article-title: Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity
  publication-title: Blood
  doi: 10.1182/blood-2002-10-3063
– volume: 31
  start-page: 391
  year: 2010
  ident: 2022061703521870400_bib28
  article-title: Impaired Toll-like receptor 7 and 9 signaling: from chronic viral infections to cancer
  publication-title: Trends Immunol
  doi: 10.1016/j.it.2010.07.004
– volume: 122
  start-page: 575
  year: 2012
  ident: 2022061703521870400_bib3
  article-title: Imiquimod clears tumors in mice independent of adaptive immunity by converting pDCs into tumor-killing effector cells
  publication-title: J Clin Invest
  doi: 10.1172/JCI61034
– volume: 29
  start-page: 464
  year: 2008
  ident: 2022061703521870400_bib12
  article-title: Plasmacytoid dendritic cells mediate oral tolerance
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.06.017
– volume: 63
  start-page: 1149
  year: 2002
  ident: 2022061703521870400_bib40
  article-title: Human plasmacytoid-derived dendritic cells and the induction of T-regulatory cells
  publication-title: Hum Immunol
  doi: 10.1016/S0198-8859(02)00753-X
– volume: 65
  start-page: 5020
  year: 2005
  ident: 2022061703521870400_bib14
  article-title: Plasmacytoid dendritic cells induce CD8+ regulatory T cells in human ovarian carcinoma
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-4043
– volume: 177
  start-page: 3260
  year: 2006
  ident: 2022061703521870400_bib24
  article-title: Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation
  publication-title: J Immunol
  doi: 10.4049/jimmunol.177.5.3260
– volume: 204
  start-page: 1441
  year: 2007
  ident: 2022061703521870400_bib21
  article-title: Tumoricidal activity of TLR7/8-activated inflammatory dendritic cells
  publication-title: J Exp Med
  doi: 10.1084/jem.20070021
– volume: 5
  start-page: 1061
  year: 2004
  ident: 2022061703521870400_bib8
  article-title: Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6
  publication-title: Nat Immunol
  doi: 10.1038/ni1118
– volume: 192
  start-page: 219
  year: 2000
  ident: 2022061703521870400_bib5
  article-title: Natural interferon alpha/beta-producing cells link innate and adaptive immunity
  publication-title: J Exp Med
  doi: 10.1084/jem.192.2.219
– volume: 16
  start-page: 309
  year: 2009
  ident: 2022061703521870400_bib34
  article-title: Functional interaction of plasmacytoid dendritic cells with multiple myeloma cells: a therapeutic target
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.08.019
– volume: 200
  start-page: 255
  year: 2003
  ident: 2022061703521870400_bib16
  article-title: Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas
  publication-title: J Pathol
  doi: 10.1002/path.1344
– volume: 133
  start-page: 771
  year: 2013
  ident: 2022061703521870400_bib29
  article-title: Breast cancer-derived TGF-beta and TNF-alpha compromise IFN-alpha production by tumor-associated plasmacytoid dendritic cells
  publication-title: Int J Cancer
  doi: 10.1002/ijc.28072
– volume: 7
  start-page: 1339
  year: 2001
  ident: 2022061703521870400_bib18
  article-title: Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells
  publication-title: Nat Med
  doi: 10.1038/nm1201-1339
– volume: 173
  start-page: 4433
  year: 2004
  ident: 2022061703521870400_bib41
  article-title: Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory T cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.173.7.4433
– volume: 65
  start-page: 3437
  year: 2005
  ident: 2022061703521870400_bib45
  article-title: Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-4262
– volume: 202
  start-page: 1131
  year: 2005
  ident: 2022061703521870400_bib30
  article-title: Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus
  publication-title: J Exp Med
  doi: 10.1084/jem.20050914
– volume: 8
  start-page: 594
  year: 2008
  ident: 2022061703521870400_bib7
  article-title: Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2358
– volume: 201
  start-page: 373
  year: 2005
  ident: 2022061703521870400_bib13
  article-title: Plasmacytoid precursor dendritic cells facilitate allogeneic hematopoietic stem cell engraftment
  publication-title: J Exp Med
  doi: 10.1084/jem.20041399
– volume: 72
  start-page: 5188
  year: 2012
  ident: 2022061703521870400_bib20
  article-title: Impaired IFN-alpha production by plasmacytoid dendritic cells favors regulatory T-cell expansion that may contribute to breast cancer progression
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-3468
– volume: 35
  start-page: 459
  year: 2006
  ident: 2022061703521870400_bib2
  article-title: Dendritic cells and tumor microenvironment: a dangerous liaison
  publication-title: Immunol Invest
  doi: 10.1080/08820130600803429
– volume: 206
  start-page: 1983
  year: 2009
  ident: 2022061703521870400_bib32
  article-title: Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8
  publication-title: J Exp Med
  doi: 10.1084/jem.20090480
– volume: 178
  start-page: 7849
  year: 2007
  ident: 2022061703521870400_bib42
  article-title: Low-dose peptide tolerance therapy of lupus generates plasmacytoid dendritic cells that cause expansion of autoantigen-specific regulatory T cells and contraction of inflammatory Th17 cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.178.12.7849
– volume: 6
  start-page: 24
  year: 2006
  ident: 2022061703521870400_bib1
  article-title: Paradoxical roles of the immune system during cancer development
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc1782
– volume: 16
  start-page: 462
  year: 2009
  ident: 2022061703521870400_bib23
  article-title: An oral TLR7 agonist is a potent adjuvant of DNA vaccination in transgenic mouse tumor models
  publication-title: Cancer Gene Ther
  doi: 10.1038/cgt.2008.91
– volume: 117
  start-page: 2570
  year: 2007
  ident: 2022061703521870400_bib44
  article-title: Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase
  publication-title: J Clin Invest
  doi: 10.1172/JCI31911
– volume: 71
  start-page: 5423
  year: 2011
  ident: 2022061703521870400_bib19
  article-title: Quantitative and functional alterations of plasmacytoid dendritic cells contribute to immune tolerance in ovarian cancer
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-0367
– volume: 10
  start-page: 7466
  year: 2004
  ident: 2022061703521870400_bib15
  article-title: Dendritic cell infiltration and prognosis of early stage breast cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-04-0684
– volume: 63
  start-page: 6478
  year: 2003
  ident: 2022061703521870400_bib17
  article-title: Identification and functional analysis of tumor-infiltrating plasmacytoid dendritic cells in head and neck cancer
  publication-title: Cancer Res
– volume: 89
  start-page: 10578
  year: 1992
  ident: 2022061703521870400_bib22
  article-title: Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.89.22.10578
– volume: 135
  start-page: 37
  year: 2008
  ident: 2022061703521870400_bib33
  article-title: Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development
  publication-title: Cell
  doi: 10.1016/j.cell.2008.09.016
– volume: 180
  start-page: 5862
  year: 2008
  ident: 2022061703521870400_bib43
  article-title: Differential control of T regulatory cell proliferation and suppressive activity by mature plasmacytoid versus conventional spleen dendritic cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.180.9.5862
– volume: 66
  start-page: 4987
  year: 2006
  ident: 2022061703521870400_bib36
  article-title: Regulatory T cells and Toll-like receptors in cancer therapy
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-05-4676
– volume: 204
  start-page: 105
  year: 2007
  ident: 2022061703521870400_bib39
  article-title: Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand
  publication-title: J Exp Med
  doi: 10.1084/jem.20061660
– volume: 5
  start-page: 1219
  year: 2004
  ident: 2022061703521870400_bib6
  article-title: Plasmacytoid dendritic cells in immunity
  publication-title: Nat Immunol
  doi: 10.1038/ni1141
– volume: 108
  start-page: 481
  year: 2003
  ident: 2022061703521870400_bib38
  article-title: Mucosal CD8alpha+ DC, with a plasmacytoid phenotype, induce differentiation and support function of T cells with regulatory properties
  publication-title: Immunology
  doi: 10.1046/j.1365-2567.2003.01606.x
– volume: 118
  start-page: 1165
  year: 2008
  ident: 2022061703521870400_bib4
  article-title: Plasmacytoid dendritic cells induce NK cell-dependent, tumor antigen-specific T cell cross-priming and tumor regression in mice
  publication-title: J Clin Invest
– volume: 294
  start-page: 1540
  year: 2001
  ident: 2022061703521870400_bib10
  article-title: Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus
  publication-title: Science
  doi: 10.1126/science.1064890
– volume: 200
  start-page: 89
  year: 2004
  ident: 2022061703521870400_bib11
  article-title: Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen
  publication-title: J Exp Med
  doi: 10.1084/jem.20040035
– volume: 189
  start-page: 4258
  year: 2012
  ident: 2022061703521870400_bib35
  article-title: Depletion of plasmacytoid dendritic cells inhibits tumor growth and prevents bone metastasis of breast cancer cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1101855
SSID ssj0005105
Score 2.4932926
Snippet Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors...
This study suggests a new use in breast cancer treatment for synthetic ligands of TLR7 like imiquimod that are used widely as immunomodulators in clinic.
SourceID hal
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4629
SubjectTerms Animals
Antineoplastic agents
Biological and medical sciences
Cancer
Dendritic Cells - immunology
Dendritic Cells - metabolism
Disease Models, Animal
Female
Immunology
Immunotherapy
Life Sciences
Ligands
Lymphocyte Activation - immunology
Lymphocyte Culture Test, Mixed
Lymphocytes, Tumor-Infiltrating - immunology
Lymphocytes, Tumor-Infiltrating - metabolism
Mammary Neoplasms, Experimental - immunology
Mammary Neoplasms, Experimental - metabolism
Medical sciences
Membrane Glycoproteins - immunology
Membrane Glycoproteins - metabolism
Mice
Mice, Inbred C57BL
Mice, Transgenic
Pharmacology. Drug treatments
T-Lymphocytes, Regulatory - immunology
T-Lymphocytes, Regulatory - metabolism
Toll-Like Receptor 7 - immunology
Toll-Like Receptor 7 - metabolism
Tumors
Title Tumor Promotion by Intratumoral Plasmacytoid Dendritic Cells Is Reversed by TLR7 Ligand Treatment
URI https://www.ncbi.nlm.nih.gov/pubmed/23722543
https://www.proquest.com/docview/1417533246
https://www.proquest.com/docview/1551630910
https://hal.science/hal-03045746
Volume 73
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tj5NAEN7UMzEmxvhufbmg8VtDLbAs9GPTeiler2m8au4b2V0W64WDS0svOf-v_8MZFijEqqdfSLtdyrLzMMzMPjtDyDtLqMii0jV9GjkmFSw2fYd65tAW0lfUkbHEgP7JnE0_049n7lmn86PBWtrmoi-_791X8j9ShTaQK-6S_QfJ1n8KDfAZ5AtHkDAcbybj7UW2Rq6_rsWDpmSAwdoc22HuF2AaX3B5nWffkG-cRkVdg95YJcmmF-AOESRlaBt0OfvkgYf-FQPpy4p93jRdx4iPda_MDrQqln81j6PQM0nSb0QVZqAtsJaTBkSw4bi-UWNokW3PdWWvSYa5TTTxW0d6eJrwK9yg2Aq0nmJ4hRea-wtPz3kzWIGFI_wW8aNahWpgr6BTlrdQsQ1bGts3XarL-_TVTkl7VKehrLS4LohSodVt6GTKyrtX5VedH-rXd4fra7KlvmAfxllkdBzo3PLtXN3T0Wm4mByFs2B-3P61Tto9Hc3CFWCqWIz2KLsCJ_22Dd4MFtqYBMc7JlLJtK2uXG40g_G83zualgl1a4UE3nuXfAPPdKyLsfzeWyqspuUDcr90d4yRxu5D0lHpI3LnpCR0PCa8gLBRQ9gQ10YTwkYTwkYNYaOAsBFsjArCeCJC2NAQNmoIPyHLow_L8dQsq36YEryJ3OToNLiO61kRG8TS8ofMErGUQ2VLOhDM9bgUvssj6kVD5XFbOJFUMcNMRtyLnKfkIM1S9ZwYAlzx2IIethtRMWC-cgRjPObQO_KiuEtoNY-hLDPiY2GWJCw8Y9dHZoYf4vSH49E8tOwQp79L-vVplzolzN9OeIs4qPrux0aXHLZkWHe3PYZZ9ZwueVMJNYRXAK7r8VRl2w1475huFzwj9oc-uCDuoHPQJc80InZXcACTLnVe3GScL8nd3YP9ihzk6616DXZ5Lg4LVP8EZ0_ftg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+Promotion+by+Intratumoral+Plasmacytoid+Dendritic+Cells+Is+Reversed+by+TLR7+Ligand+Treatment&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Le+Mercier%2C+Isabelle&rft.au=Poujol%2C+Dominique&rft.au=Sanlaville%2C+A&rft.au=Sisirak%2C+Vanja&rft.date=2013-08-01&rft.pub=American+Association+for+Cancer+Research&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=73&rft.issue=15&rft.spage=4629&rft.epage=4640&rft_id=info:doi/10.1158%2F0008-5472.can-12-3058&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03045746v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon