Tumor Promotion by Intratumoral Plasmacytoid Dendritic Cells Is Reversed by TLR7 Ligand Treatment
Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors represent an independent prognostic factor associated with poor outcome. To understand this negative impact of tumor-associated pDC (TApDC),...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 73; no. 15; pp. 4629 - 4640 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
01.08.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Plasmacytoid dendritic cells (pDC) are key regulators of antiviral immunity. In previous studies, we reported that pDC-infiltrating human primary breast tumors represent an independent prognostic factor associated with poor outcome. To understand this negative impact of tumor-associated pDC (TApDC), we developed an orthotopic murine mammary tumor model that closely mimics the human pathology, including pDC and regulatory T cell (Treg) infiltration. We showed that TApDC are mostly immature and maintain their ability to internalize antigens in vivo and to activate CD4+ T cells. Most importantly, TApDC were specifically altered for cytokine production in response to Toll-like receptor (TLR)–9 ligands in vitro while preserving unaltered response to TLR7 ligands (TLR7L). In vivo pDC depletion delayed tumor growth, showing that TApDC provide an immune-subversive environment, most likely through Treg activation, thus favoring tumor progression. However, in vivo intratumoral administration of TLR7L led to TApDC activation and displayed a potent curative effect. Depletion of pDC and type I IFN neutralization prevented TLR7L antitumoral effect. Our results establish a direct contribution of TApDC to primary breast tumor progression and rationalize the application of TLR7 ligands to restore TApDC activation in breast cancer. Cancer Res; 73(15); 4629–40. ©2013 AACR. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0008-5472 1538-7445 1538-7445 |
DOI: | 10.1158/0008-5472.CAN-12-3058 |