Evaluation of radiophotoluminescent glass dosimeter response for therapeutic spot scanning proton beam: suggestion of linear energy transfer‐based correction

A radiophotoluminescent glass dosimeter (RGD) is used for a postal audit of a photon beam because of its various excellent characteristics. However, it has not been used for scanning proton beams because its response characteristics have not been verified. In this study, the response of RGD to scann...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied clinical medical physics Vol. 22; no. 8; pp. 265 - 272
Main Authors Nagata, Junya, Yasui, Keisuke, Omachi, Chihiro, Toshiyuki, Toshito, Shimizu, Hidetoshi, Aoyama, Takahiro, Hayashi, Naoki
Format Journal Article
LanguageEnglish
Published Malden Massachusetts John Wiley & Sons, Inc 01.08.2021
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A radiophotoluminescent glass dosimeter (RGD) is used for a postal audit of a photon beam because of its various excellent characteristics. However, it has not been used for scanning proton beams because its response characteristics have not been verified. In this study, the response of RGD to scanning protons was investigated to develop a dosimetry protocol using the linear energy transfer (LET)‐based correction factor. The responses of RGD to four maximum‐range‐energy‐pattern proton beams were verified by comparing it with ionization chamber (IC) dosimetry. The LET at each measurement depth was calculated via Monte Carlo (MC) simulation. The LET correction factor (kLETRGD) was the ratio between the uncorrected RGD dose (DrawRGD) and the IC dose at each measurement depth. kLETRGD can be represented as a function of LET using the following equation: kLETRGDLET=‐0.035LET+1.090. DrawRGD showed a linear under‐response with increasing LET, and the maximum dose difference between the IC dose and DrawRGD was 15.2% at an LET of 6.07 keV/μm. The LET‐based correction dose (DLETRGD) conformed within 3.6% of the IC dose. The mean dose difference (±SD) of DrawRGD and DLETRGD was –2.5 ± 6.9% and 0.0 ± 1.6%, respectively. To achieve accurate dose verification for scanning proton beams using RGD, we derived a linear regression equation based on LET. The results show that with appropriate LET correction, RGD can be used for dose verification of scanning proton beams.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1526-9914
1526-9914
DOI:10.1002/acm2.13378