An Experimental Population Study of Nucleotide Excision Repair as a Risk Factor for UVB-induced Melanoma
Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in situ and in vitro studies consistently yield equivocal results when addressing individual DNA repair capacity...
Saved in:
Published in | Photochemistry and photobiology Vol. 87; no. 2; pp. 335 - 341 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.03.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0031-8655 1751-1097 1751-1097 |
DOI | 10.1111/j.1751-1097.2010.00875.x |
Cover
Abstract | Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in situ and in vitro studies consistently yield equivocal results when addressing individual DNA repair capacity and melanoma susceptibility. The primary objective of this study was to determine if individual global NER capacity is a risk factor for melanoma formation in a prominent UVB‐inducible melanoma model, hybrid Xiphophorus fishes. After neonatal UVB irradiation, adult tumor‐bearing and tumor‐free fish were given a challenge UVB dose and (6–4) photoproduct repair was quantified in individual fish at 24 h using radioimmunoassay. Despite considerable inter‐individual variation in repair capacity, ranging from 13% to 91%, we found no difference in mean NER capacity between fish with and without melanomas, thus detaching global NER from melanomagenesis. Furthermore, despite epidemiological data indicating that sex and age are important risk factors underlying melanoma susceptibility, we found no difference in mean NER rates among the sexes or as a function of age. We conclude with a discussion of the apparent paradox of how inter‐individual variation in NER is not a risk factor given the clear evidence that DNA damage underlies melanoma susceptibility. |
---|---|
AbstractList | Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in situ and in vitro studies consistently yield equivocal results when addressing individual DNA repair capacity and melanoma susceptibility. The primary objective of this study was to determine if individual global NER capacity is a risk factor for melanoma formation in a prominent UVB‐inducible melanoma model, hybrid Xiphophorus fishes. After neonatal UVB irradiation, adult tumor‐bearing and tumor‐free fish were given a challenge UVB dose and (6–4) photoproduct repair was quantified in individual fish at 24 h using radioimmunoassay. Despite considerable inter‐individual variation in repair capacity, ranging from 13% to 91%, we found no difference in mean NER capacity between fish with and without melanomas, thus detaching global NER from melanomagenesis. Furthermore, despite epidemiological data indicating that sex and age are important risk factors underlying melanoma susceptibility, we found no difference in mean NER rates among the sexes or as a function of age. We conclude with a discussion of the apparent paradox of how inter‐individual variation in NER is not a risk factor given the clear evidence that DNA damage underlies melanoma susceptibility. Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in situ and in vitro studies consistently yield equivocal results when addressing individual DNA repair capacity and melanoma susceptibility. The primary objective of this study was to determine if individual global NER capacity is a risk factor for melanoma formation in a prominent UVB-inducible melanoma model, hybrid Xiphophorus fishes. After neonatal UVB irradiation, adult tumor-bearing and tumor-free fish were given a challenge UVB dose and (6-4) photoproduct repair was quantified in individual fish at 24 h using radioimmunoassay. Despite considerable inter-individual variation in repair capacity, ranging from 13% to 91%, we found no difference in mean NER capacity between fish with and without melanomas, thus detaching global NER from melanomagenesis. Furthermore, despite epidemiological data indicating that sex and age are important risk factors underlying melanoma susceptibility, we found no difference in mean NER rates among the sexes or as a function of age. We conclude with a discussion of the apparent paradox of how inter-individual variation in NER is not a risk factor given the clear evidence that DNA damage underlies melanoma susceptibility.Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in situ and in vitro studies consistently yield equivocal results when addressing individual DNA repair capacity and melanoma susceptibility. The primary objective of this study was to determine if individual global NER capacity is a risk factor for melanoma formation in a prominent UVB-inducible melanoma model, hybrid Xiphophorus fishes. After neonatal UVB irradiation, adult tumor-bearing and tumor-free fish were given a challenge UVB dose and (6-4) photoproduct repair was quantified in individual fish at 24 h using radioimmunoassay. Despite considerable inter-individual variation in repair capacity, ranging from 13% to 91%, we found no difference in mean NER capacity between fish with and without melanomas, thus detaching global NER from melanomagenesis. Furthermore, despite epidemiological data indicating that sex and age are important risk factors underlying melanoma susceptibility, we found no difference in mean NER rates among the sexes or as a function of age. We conclude with a discussion of the apparent paradox of how inter-individual variation in NER is not a risk factor given the clear evidence that DNA damage underlies melanoma susceptibility. Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in situ and in vitro studies consistently yield equivocal results when addressing individual DNA repair capacity and melanoma susceptibility. The primary objective of this study was to determine if individual global NER capacity is a risk factor for melanoma formation in a prominent UVB-inducible melanoma model, hybrid Xiphophorus fishes. After neonatal UVB irradiation, adult tumor-bearing and tumor-free fish were given a challenge UVB dose and (6-4) photoproduct repair was quantified in individual fish at 24h using radioimmunoassay. Despite considerable inter-individual variation in repair capacity, ranging from 13% to 91%, we found no difference in mean NER capacity between fish with and without melanomas, thus detaching global NER from melanomagenesis. Furthermore, despite epidemiological data indicating that sex and age are important risk factors underlying melanoma susceptibility, we found no difference in mean NER rates among the sexes or as a function of age. We conclude with a discussion of the apparent paradox of how inter-individual variation in NER is not a risk factor given the clear evidence that DNA damage underlies melanoma susceptibility. Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in-situ and in-vitro studies consistently yield equivocal results when addressing individual DNA repair capacity and melanoma susceptibility. The primary objective of this study was to determine if individual global NER capacity is a risk factor for melanoma formation in a prominent UVB inducible melanoma model, hybrid Xiphophorus fishes. After neonatal UVB irradiation, adult tumor-bearing and tumor-free fish were given a challenge UVB dose and (6-4) photoproduct repair was quantified in individual fish at 24 h using radioimmunoassay. Despite considerable inter-individual variation in repair capacity, ranging from 13% to 91%, we found no difference in mean NER capacity between fish with and without melanomas, thus detaching global NER from melanomagenesis. Furthermore, despite epidemiological data indicating that sex and age are important risk factors underlying melanoma susceptibility, we found no difference in mean NER rates among the sexes or as a function of age. We conclude with a discussion of the apparent paradox of how inter-individual variation in NER is not a risk factor given the clear evidence that DNA damage underlies melanoma susceptibility. Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in situ and in vitro studies consistently yield equivocal results when addressing individual DNA repair capacity and melanoma susceptibility. The primary objective of this study was to determine if individual global NER capacity is a risk factor for melanoma formation in a prominent UVB-inducible melanoma model, hybrid Xiphophorus fishes. After neonatal UVB irradiation, adult tumor-bearing and tumor-free fish were given a challenge UVB dose and (6-4) photoproduct repair was quantified in individual fish at 24 h using radioimmunoassay. Despite considerable inter-individual variation in repair capacity, ranging from 13% to 91%, we found no difference in mean NER capacity between fish with and without melanomas, thus detaching global NER from melanomagenesis. Furthermore, despite epidemiological data indicating that sex and age are important risk factors underlying melanoma susceptibility, we found no difference in mean NER rates among the sexes or as a function of age. We conclude with a discussion of the apparent paradox of how inter-individual variation in NER is not a risk factor given the clear evidence that DNA damage underlies melanoma susceptibility. [PUBLICATION ABSTRACT] |
Author | Fernandez, André A. Mitchell, David L. Garcia, Rachel Trono, David Paniker, Lakshmi |
Author_xml | – sequence: 1 givenname: André A. surname: Fernandez fullname: Fernandez, André A. organization: Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX – sequence: 2 givenname: Rachel surname: Garcia fullname: Garcia, Rachel organization: Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX – sequence: 3 givenname: Lakshmi surname: Paniker fullname: Paniker, Lakshmi organization: Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX – sequence: 4 givenname: David surname: Trono fullname: Trono, David organization: Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX – sequence: 5 givenname: David L. surname: Mitchell fullname: Mitchell, David L. email: dmitchel@mdanderson.org organization: E-mail: dmitchel@mdanderson.org |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21143485$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUl1v0zAUtdAQ6wZ_AVm88JRybcexIyGkMW0r0hjV2Nij5Ti3zF0alziB9t_j7qPAXlgkK5bvOcf3-J49stOGFgmhDMYsfe_mY6YkyxiUaswhnQJoJcerZ2S0LeyQEYBgmS6k3CV7Mc4BWF4q9oLscsZykWs5ItcHLT1aLbHzC2x729BpWA6N7X1o6dd-qNc0zOjZ4BoMva8xYZ2Pm-I5Lq3vqI3U0nMfb-ixdX3o6Cyty28fM9_Wg8OafsbGtmFhX5LnM9tEfHX_3yeXx0cXh5Ps9MvJp8OD08xJVsqMFUyWohaqxgqqUggUhUTIK-UAKw5YOO5wplXJ6pxX3FZYF6UGcBJyzrXYJx_udJdDtcDaJVedbcwyGbTd2gTrzb-V1l-b7-GnEblQSkESeHsv0IUfA8beLHx02CQbGIZoSuBCaF2U_0VqKTnwNISEfPMIOQ9D16Z3MLqA1D0vVAK9_rvzbcsPw_pjzXUhxg5nxvn-dlTJiG8MA7NJh5mbTQjMJgRmkw5zmw6zSgL6kcDDHU-gvr-j_vINrp_MM9PJNG0SPbuj-9jjaku33Y1JzhPy6uzEKHkBbMIn5kr8Bnmx320 |
CODEN | PHCBAP |
CitedBy_id | crossref_primary_10_3390_ijms14011132 crossref_primary_10_3390_ijerph14060606 crossref_primary_10_1371_journal_pone_0085294 crossref_primary_10_1093_carcin_bgs152 |
Cites_doi | 10.1126/sageke.2006.9.pe13 10.1016/S0378-1119(98)00144-9 10.1158/0008-5472.CAN-04-1454 10.1093/jnci/93.9.678 10.1093/carcin/21.3.453 10.1101/gad.12.22.3467 10.1073/pnas.86.22.8922 10.1007/s10565-007-9047-5 10.1002/ijc.24126 10.1158/0008-5472.CAN-10-0095 10.1093/genetics/153.3.1385 10.1111/1523-1747.ep12399329 10.1007/978-0-387-77574-6_13 10.1073/pnas.0511248103 10.1111/j.1751-1097.2004.tb00033.x 10.1046/j.1523-1747.2001.01192.x 10.1016/j.mam.2007.05.005 10.1007/BF01956394 10.1093/jnci/dji429 10.1073/pnas.90.14.6666 10.1111/j.1755-148X.2010.00693.x 10.1002/ijc.2910560617 10.1093/jnci/95.11.806 10.1056/NEJMoa050092 10.1385/1-59259-973-7:239 10.1038/sj.jid.5700481 10.2217/14796694.4.6.841 10.1146/annurev.bi.65.070196.000355 10.1093/genetics/12.3.253 10.1056/NEJM199107183250306 10.1007/978-1-4899-0301-3_6 10.1093/jnci/95.4.308 10.1016/j.tig.2006.09.013 10.1038/sj.jid.5701028 10.1016/j.tim.2007.05.005 10.1073/pnas.1000324107 10.1111/j.1751-1097.2009.00591.x 10.1093/carcin/bgp207 10.1038/nature08658 10.1053/j.seminoncol.2007.09.011 10.1017/S0007114508076265 |
ContentType | Journal Article |
Copyright | 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology. Copyright American Society for Photobiology Mar/Apr 2011 |
Copyright_xml | – notice: 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology – notice: 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology. – notice: Copyright American Society for Photobiology Mar/Apr 2011 |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 7TM 7U7 8FD C1K FR3 K9. NAPCQ P64 RC3 7X8 5PM |
DOI | 10.1111/j.1751-1097.2010.00875.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Docstoc Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Genetics Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts Docstoc ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Nucleic Acids Abstracts Nursing & Allied Health Premium CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Biology |
EISSN | 1751-1097 |
EndPage | 341 |
ExternalDocumentID | PMC3437770 2313744641 21143485 10_1111_j_1751_1097_2010_00875_x PHP875 ark_67375_WNG_75T01H2H_W |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA009480 – fundername: NCI NIH HHS grantid: T32 CA009480 – fundername: NCI NIH HHS grantid: R01 CA113671 – fundername: NCI NIH HHS grantid: CA11367 – fundername: NIEHS NIH HHS grantid: ES07784 – fundername: NIEHS NIH HHS grantid: P30 ES007784 |
GroupedDBID | --- -JH -~X .3N .GA .GJ .Y3 05W 0R~ 10A 123 1OB 1OC 29O 31~ 33P 3O- 3SF 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5RE 5VS 66C 702 7PT 7RV 7X2 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8AO 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AAPSS AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABUWG ACAHQ ACBWZ ACCZN ACGFO ACGFS ACGOD ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADHSS ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEFGJ AEIGN AEIMD AENEX AEPYG AEUYN AEUYR AEYWJ AFBPY AFFIJ AFFPM AFGKR AFKRA AFNWH AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHEFC AHMBA AIAGR AIDQK AIDYY AITYG AIURR AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BHBCM BHPHI BKEYQ BLYAC BMNLL BNHUX BPHCQ BROTX BRXPI BSCLL BVXVI BY8 C1A CAG CCPQU COF CS3 D-E D-F DC7 DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO E3Z EBS ECGQY EJD EX3 F00 F01 F04 F5P FEDTE FYUFA FZ0 G-S G.N GNUQQ GODZA H.T H.X H13 HCIFZ HF~ HGLYW HMCUK HVGLF HZ~ H~9 IH2 IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M0K M1P M2P M2Q M7P MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NAPCQ NDZJH NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PHGZM PHGZT PJZUB PPXIY PQ0 PQGLB PQQKQ PROAC PSQYO PUEGO Q.N Q11 Q2X Q5J QB0 R.K RBO RIWAO RJQFR ROL RWL RX1 S0X SAMSI SJN SUPJJ TAE UB1 UKHRP W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WOW WQJ WXSBR WYISQ XG1 XOL YNT ZGI ZXP ZZTAW ~02 ~IA ~KM ~WT 3V. 88A AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALIPV ESX M0L RIG WRC WSB AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN 4T- 7TM 7U7 8FD C1K FR3 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c5195-161593d37deb0b933e365e04b7c0eb20e6c2cef8791d42b2abed69800c5042283 |
IEDL.DBID | DR2 |
ISSN | 0031-8655 1751-1097 |
IngestDate | Thu Aug 21 13:52:28 EDT 2025 Fri Sep 05 02:41:40 EDT 2025 Thu Sep 04 15:35:37 EDT 2025 Wed Aug 13 06:28:49 EDT 2025 Wed Feb 19 01:47:27 EST 2025 Tue Jul 01 02:14:32 EDT 2025 Thu Apr 24 23:06:50 EDT 2025 Wed Jan 22 17:05:27 EST 2025 Tue Sep 09 05:29:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5195-161593d37deb0b933e365e04b7c0eb20e6c2cef8791d42b2abed69800c5042283 |
Notes | istex:7C6273D081EE8F0264B90A5E84885A5646F6EC0D ArticleID:PHP875 ark:/67375/WNG-75T01H2H-W ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 21143485 |
PQID | 860800267 |
PQPubID | 30729 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3437770 proquest_miscellaneous_902338869 proquest_miscellaneous_855202003 proquest_journals_860800267 pubmed_primary_21143485 crossref_citationtrail_10_1111_j_1751_1097_2010_00875_x crossref_primary_10_1111_j_1751_1097_2010_00875_x wiley_primary_10_1111_j_1751_1097_2010_00875_x_PHP875 istex_primary_ark_67375_WNG_75T01H2H_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March/April 2011 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: March/April 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: United States – name: Lawrence |
PublicationTitle | Photochemistry and photobiology |
PublicationTitleAlternate | Photochem Photobiol |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Kazianis, S., L. Gan, L. Della Coletta, B. Santi, D. C. Morizot and R. S. Nairn (1998) Cloning and comparative sequence analysis of TP53 in Xiphophorus fish hybrid melanoma models. Gene 212, 31-38. Mitchell, D. L., A. A. Fernandez, R. S. Nairn, R. Garcia, L. Paniker, D. Trono, H. D. Thames and I. Gimenez-Conti (2010) Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model. Proc. Natl. Acad. Sci. U S A 107, 9329-9334. Desai, A., R. Krathen, I. Orengo and E. E. Medrano (2006) The age of skin cancers. Sci. Aging Knowl. Environ. 2006, pe13. Wang, L. E., P. Xiong, S. S. Strom, L. H. Goldberg, J. E. Lee, M. I. Ross, P. F. Mansfield, J. E. Gershenwald, V. G. Prieto, J. N. Cormier, M. Duvic, G. L. Clayman, R. S. Weber, S. M. Lippman, C. I. Amos, M. R. Spitz and Q. Wei (2005) In vitro sensitivity to ultraviolet B light and skin cancer risk: A case-control analysis. J. Natl. Cancer Inst. 97, 1822-1831. Patton, E. E., D. L. Mitchell and R. S. Nairn (2010) Genetic and environmental melanoma models in fish. Pigment Cell Melanoma Res. 23, 314-337. Mitchell, D. L., R. S. Nairn, D. A. Johnston, M. Byrom, S. Kazianis and R. B. Walter (2004) Decreased levels of (6-4) photoproduct excision repair in hybrid fish of the genus Xiphophorus. Photochem. Photobiol. 79, 447-452. Whiteman, D., P. Watt, D. Purdie, M. Hughes, N. Hayward and A. Green (2003) Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. J. Natl. Cancer Inst. 95, 806-812. Mocellin, S., D. Verdi and D. Nitti (2009) DNA repair gene polymorphisms and risk of cutaneous melanoma: A systematic review and meta-analysis. Carcinogenesis 30, 1735-1743. Chin, L., G. Merlino and R. A. DePinho (1998) Malignant melanoma: Modern black plague and genetic black box. Genes Dev. 12, 3467-3481. Wang, L. E., T. C. Hsu, P. Xiong, S. S. Strom, M. Duvic, G. L. Clayman, R. S. Weber, S. M. Lippman, L. H. Goldberg and Q. Wei (2007) 4-Nitroquinoline-1-oxide-induced mutagen sensitivity and risk of nonmelanoma skin cancer: A case-control analysis. J. Invest. Dermatol. 127, 196-205. Savery, N. J. (2007) The molecular mechanism of transcription-coupled DNA repair. Trends Microbiol. 15, 326-333. Setlow, R. B., A. D. Woodhead and E. Grist (1989) Animal model for ultraviolet radiation-induced melanoma: Platyfish-swordtail hybrid. Proc. Natl. Acad. Sci. U S A 86, 8922-8926. De Fabo, E. C., F. P. Noonan, T. Fears and G. Merlino (2004) Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer Res. 64, 6372-6376. Gordon, M. (1927) The genetics of viviparous top-minnow Platypoecilus: The inheritance of two kinds of melanophores. Genetics 12, 253-283. Collins, A. R. and I. Gaivao (2007) DNA base excision repair as a biomarker in molecular epidemiology studies. Mol. Aspects Med. 28, 307-322. Rass, K. and J. Reichrath (2008) UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer. Adv. Exp. Med. Biol. 624, 162-178. Setlow, R. B., E. Grist, K. Thompson and A. D. Woodhead (1993) Wavelengths effective in induction of malignant melanoma. Proc. Natl. Acad. Sci. U S A 90, 6666-6670. Tyson, J., F. Caple, A. Spiers, B. Burtle, A. K. Daly, E. A. Williams, J. E. Hesketh and J. C. Mathers (2009) Inter-individual variation in nucleotide excision repair in young adults: Effects of age, adiposity, micronutrient supplementation and genotype. Br. J. Nutr. 101, 1316-1323. Mattei, S., M. P. Colombo, C. Melani, A. Silvani, G. Parmiani and M. Herlyn (1994) Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int. J. Cancer 56, 853-857. Schartl, M., U. Hornung, H. Gutbrod, J. N. Volff and J. Wittbrodt (1999) Melanoma loss-of-function mutants in Xiphophorus caused by Xmrk-oncogene deletion and gene disruption by a transposable element. Genetics 153, 1385-1394. Wei, Q., J. E. Lee, J. E. Gershenwald, M. I. Ross, P. F. Mansfield, S. S. Strom, L. E. Wang, Z. Guo, Y. Qiao, C. I. Amos, M. R. Spitz and M. Duvic (2003) Repair of UV light-induced DNA damage and risk of cutaneous malignant melanoma. J. Natl. Cancer Inst. 95, 308-315. Sancar, A. (1996) DNA excision repair. Annu. Rev. Biochem. 65, 43-81. Noonan, F. P., T. Otsuka, S. Bang, M. R. Anver and G. Merlino (2000) Accelerated ultraviolet radiation-induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice. Cancer Res. 60, 3738-3743. Wood, S. R., M. Berwick, R. D. Ley, R. B. Walter, R. B. Setlow and G. S. Timmins (2006) UV causation of melanoma in Xiphophorus is dominated by melanin photosensitized oxidant production. Proc. Natl. Acad. Sci. U S A 103, 4111-4115. Li, C., L. E. Wang and Q. Wei (2009) DNA repair phenotype and cancer susceptibility-A mini review. Int. J. Cancer 124, 999-1007. Mitchell, D. L., R. Greinert, F. R. de Gruijl, K. L. Guikers, E. W. Breitbart, M. Byrom, M. M. Gallmeier, M. G. Lowery and B. Volkmer (1999) Effects of chronic low-dose ultraviolet B radiation on DNA damage and repair in mouse skin. Cancer Res. 59, 2875-2884. Pleasance, E. D., R. K. Cheetham, P. J. Stephens, D. J. McBride, S. J. Humphray, C. D. Greenman, I. Varela, M. L. Lin, G. R. Ordonez, G. R. Bignell, K. Ye, J. Alipaz, M. J. Bauer, D. Beare, A. Butler, R. J. Carter, L. Chen, A. J. Cox, S. Edkins, P. I. Kokko-Gonzales, N. A. Gormley, R. J. Grocock, C. D. Haudenschild, M. M. Hims, T. James, M. Jia, Z. Kingsbury, C. Leroy, J. Marshall, A. Menzies, L. J. Mudie, Z. Ning, T. Royce, O. B. Schulz-Trieglaff, A. Spiridou, L. A. Stebbings, L. Szajkowski, J. Teague, D. Williamson, L. Chin, M. T. Ross, P. J. Campbell, D. R. Bentley, P. A. Futreal and M. R. Stratton (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191-196. de Boer, J. and J. H. Hoeijmakers (2000) Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453-460. Meierjohann, S. and M. Schartl (2006) From Mendelian to molecular genetics: The Xiphophorus melanoma model. Trends Genet. 22, 654-661. Gaivao, I., A. Piasek, A. Brevik, S. Shaposhnikov and A. R. Collins (2009) Comet assay-based methods for measuring DNA repair in vitro; estimates of inter- and intra-individual variation. Cell Biol. Toxicol. 25, 45-52. Kraemer, K. H., D. D. Levy, C. N. Parris, E. M. Gozukara, S. Moriwaki, S. Adelberg and M. M. Seidman (1994) Xeroderma pigmentosum and related disorders: Examining the linkage between defective DNA repair and cancer. J. Invest. Dermatol. 103, 96S-101S. Mitchell, D. L., M. Byrom, S. Chiarello and M. G. Lowery (2001) Effects of chronic exposure to ultraviolet B radiation on DNA repair in the dermis and epidermis of the hairless mouse. J. Invest. Dermatol. 116, 209-215. Gaddameedhi, S., M. G. Kemp, J. T. Reardon, J. M. Shields, S. L. Smith-Roe, W. K. Kaufmann and A. Sancar (2010) Similar nucleotide excision repair capacity in melanocytes and melanoma cells. Cancer Res. 70, 4922-4930. Mitchell, D. L., L. Paniker and T. Douki (2009) DNA damage, repair and photoadaptation in a Xiphophorus fish hybrid. Photochem. Photobiol. 85, 1384-1390. Lachiewicz, A., M. Berwick, C. Wiggins and N. Thomas (2007) Epidemiologic support for melanoma heterogeneity using the Surveillance, Epidemiology, and End Results Program. J. Invest. Dermatol. 128, 243-245. Curtin, J. A., J. Fridlyand, T. Kageshita, H. N. Patel, K. J. Busam, H. Kutzner, K. H. Cho, S. Aiba, E. B. Brocker, P. E. LeBoit, D. Pinkel and B. C. Bastian (2005) Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353, 2135-2147. Jemal, A., S. S. Devesa, P. Hartge and M. A. Tucker (2001) Recent trends in cutaneous melanoma incidence among whites in the United States. J. Natl. Cancer Inst. 93, 678-683. Koh, H. K. (1991) Cutaneous melanoma. N. Engl. J. Med. 325, 171-182. Walker, G. (2008) Cutaneous melanoma: How does ultraviolet light contribute to melanocyte transformation? Future Oncol. 4, 841-856. Kosswig, C. (1928) Über bastarde der Teleostier Platyopoecilus und Xiphophorus. Z. Indukt. Abstamm. Vererbungsl. 47, 150-158. Haluska, F., T. Pemberton, N. Ibrahim and K. Kalinsky (2007) The RTK/RAS/BRAF/PI3K pathways in melanoma: Biology, small molecule inhibitors, and potential applications. Semin. Oncol. 34, 546-554. 1927; 12 2001; 93 2009; 25 2004; 64 2009; 85 1989; 86 2007; 127 2007; 128 2010; 107 2005; 353 2010 2000; 21 2009 2010; 463 1996 2008; 624 2006 1993; 90 2008; 4 2003; 95 1998; 212 2007; 34 2007; 15 2010; 23 2007; 28 2009; 30 1994; 103 1928; 47 2006; 22 1999; 59 2004; 79 1994; 56 1999; 153 2005; 97 2009; 101 2006; 2006 2009; 124 2000; 60 2010; 70 1991; 325 1998; 12 1996; 65 2006; 103 2001; 116 e_1_2_6_31_2 e_1_2_6_30_2 Gordon M. (e_1_2_6_9_2) 1927; 12 e_1_2_6_18_2 e_1_2_6_19_2 Cleaver J. E. (e_1_2_6_15_2) 2010 Noonan F. P. (e_1_2_6_41_2) 2000; 60 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_36_2 e_1_2_6_42_2 e_1_2_6_20_2 e_1_2_6_40_2 Mitchell D. L. (e_1_2_6_25_2) 1999; 59 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_22_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_46_2 20439744 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9329-34 7509778 - Int J Cancer. 1994 Mar 15;56(6):853-7 16537493 - Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4111-5 16723638 - Sci Aging Knowledge Environ. 2006 May 15;2006(9):pe13 17713570 - J Invest Dermatol. 2008 Jan;128(1):243-5 19656328 - Photochem Photobiol. 2009 Nov-Dec;85(6):1384-90 20016485 - Nature. 2010 Jan 14;463(7278):191-6 19065660 - Int J Cancer. 2009 Mar 1;124(5):999-1007 16368944 - J Natl Cancer Inst. 2005 Dec 21;97(24):1822-31 16673886 - Methods Mol Biol. 2006;314:239-49 19086850 - Future Oncol. 2008 Dec;4(6):841-56 19706646 - Carcinogenesis. 2009 Oct;30(10):1735-43 11179995 - J Invest Dermatol. 2001 Feb;116(2):209-15 18348455 - Adv Exp Med Biol. 2008;624:162-78 18838045 - Br J Nutr. 2009 May;101(9):1316-23 17246524 - Genetics. 1927 May;12(3):253-83 17034900 - Trends Genet. 2006 Dec;22(12):654-61 12783935 - J Natl Cancer Inst. 2003 Jun 4;95(11):806-12 18058031 - Cell Biol Toxicol. 2009 Feb;25(1):45-52 15191054 - Photochem Photobiol. 2004 May;79(5):447-52 20501836 - Cancer Res. 2010 Jun 15;70(12):4922-30 17659329 - Mol Aspects Med. 2007 Jun-Aug;28(3-4):307-22 18083378 - Semin Oncol. 2007 Dec;34(6):546-54 15374941 - Cancer Res. 2004 Sep 15;64(18):6372-6 8811174 - Annu Rev Biochem. 1996;65:43-81 9661661 - Gene. 1998 May 28;212(1):31-8 17572090 - Trends Microbiol. 2007 Jul;15(7):326-33 8341684 - Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6666-70 10383149 - Cancer Res. 1999 Jun 15;59(12):2875-84 7963692 - J Invest Dermatol. 1994 Nov;103(5 Suppl):96S-101S 9832500 - Genes Dev. 1998 Nov 15;12(22):3467-81 16291983 - N Engl J Med. 2005 Nov 17;353(20):2135-47 2813430 - Proc Natl Acad Sci U S A. 1989 Nov;86(22):8922-6 12591987 - J Natl Cancer Inst. 2003 Feb 19;95(4):308-15 20230482 - Pigment Cell Melanoma Res. 2010 Jun;23(3):314-37 11333289 - J Natl Cancer Inst. 2001 May 2;93(9):678-83 10919643 - Cancer Res. 2000 Jul 15;60(14):3738-43 10545466 - Genetics. 1999 Nov;153(3):1385-94 16841033 - J Invest Dermatol. 2007 Jan;127(1):196-205 10688865 - Carcinogenesis. 2000 Mar;21(3):453-60 1805813 - N Engl J Med. 1991 Jul 18;325(3):171-82 |
References_xml | – reference: de Boer, J. and J. H. Hoeijmakers (2000) Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453-460. – reference: Mitchell, D. L., M. Byrom, S. Chiarello and M. G. Lowery (2001) Effects of chronic exposure to ultraviolet B radiation on DNA repair in the dermis and epidermis of the hairless mouse. J. Invest. Dermatol. 116, 209-215. – reference: Mitchell, D. L., R. Greinert, F. R. de Gruijl, K. L. Guikers, E. W. Breitbart, M. Byrom, M. M. Gallmeier, M. G. Lowery and B. Volkmer (1999) Effects of chronic low-dose ultraviolet B radiation on DNA damage and repair in mouse skin. Cancer Res. 59, 2875-2884. – reference: Walker, G. (2008) Cutaneous melanoma: How does ultraviolet light contribute to melanocyte transformation? Future Oncol. 4, 841-856. – reference: Setlow, R. B., A. D. Woodhead and E. Grist (1989) Animal model for ultraviolet radiation-induced melanoma: Platyfish-swordtail hybrid. Proc. Natl. Acad. Sci. U S A 86, 8922-8926. – reference: Haluska, F., T. Pemberton, N. Ibrahim and K. Kalinsky (2007) The RTK/RAS/BRAF/PI3K pathways in melanoma: Biology, small molecule inhibitors, and potential applications. Semin. Oncol. 34, 546-554. – reference: Setlow, R. B., E. Grist, K. Thompson and A. D. Woodhead (1993) Wavelengths effective in induction of malignant melanoma. Proc. Natl. Acad. Sci. U S A 90, 6666-6670. – reference: Mattei, S., M. P. Colombo, C. Melani, A. Silvani, G. Parmiani and M. Herlyn (1994) Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int. J. Cancer 56, 853-857. – reference: Tyson, J., F. Caple, A. Spiers, B. Burtle, A. K. Daly, E. A. Williams, J. E. Hesketh and J. C. Mathers (2009) Inter-individual variation in nucleotide excision repair in young adults: Effects of age, adiposity, micronutrient supplementation and genotype. Br. J. Nutr. 101, 1316-1323. – reference: Chin, L., G. Merlino and R. A. DePinho (1998) Malignant melanoma: Modern black plague and genetic black box. Genes Dev. 12, 3467-3481. – reference: Meierjohann, S. and M. Schartl (2006) From Mendelian to molecular genetics: The Xiphophorus melanoma model. Trends Genet. 22, 654-661. – reference: Patton, E. E., D. L. Mitchell and R. S. Nairn (2010) Genetic and environmental melanoma models in fish. Pigment Cell Melanoma Res. 23, 314-337. – reference: Desai, A., R. Krathen, I. Orengo and E. E. Medrano (2006) The age of skin cancers. Sci. Aging Knowl. Environ. 2006, pe13. – reference: Gaivao, I., A. Piasek, A. Brevik, S. Shaposhnikov and A. R. Collins (2009) Comet assay-based methods for measuring DNA repair in vitro; estimates of inter- and intra-individual variation. Cell Biol. Toxicol. 25, 45-52. – reference: Gaddameedhi, S., M. G. Kemp, J. T. Reardon, J. M. Shields, S. L. Smith-Roe, W. K. Kaufmann and A. Sancar (2010) Similar nucleotide excision repair capacity in melanocytes and melanoma cells. Cancer Res. 70, 4922-4930. – reference: Schartl, M., U. Hornung, H. Gutbrod, J. N. Volff and J. Wittbrodt (1999) Melanoma loss-of-function mutants in Xiphophorus caused by Xmrk-oncogene deletion and gene disruption by a transposable element. Genetics 153, 1385-1394. – reference: Jemal, A., S. S. Devesa, P. Hartge and M. A. Tucker (2001) Recent trends in cutaneous melanoma incidence among whites in the United States. J. Natl. Cancer Inst. 93, 678-683. – reference: Kosswig, C. (1928) Über bastarde der Teleostier Platyopoecilus und Xiphophorus. Z. Indukt. Abstamm. Vererbungsl. 47, 150-158. – reference: Mocellin, S., D. Verdi and D. Nitti (2009) DNA repair gene polymorphisms and risk of cutaneous melanoma: A systematic review and meta-analysis. Carcinogenesis 30, 1735-1743. – reference: Gordon, M. (1927) The genetics of viviparous top-minnow Platypoecilus: The inheritance of two kinds of melanophores. Genetics 12, 253-283. – reference: Li, C., L. E. Wang and Q. Wei (2009) DNA repair phenotype and cancer susceptibility-A mini review. Int. J. Cancer 124, 999-1007. – reference: Noonan, F. P., T. Otsuka, S. Bang, M. R. Anver and G. Merlino (2000) Accelerated ultraviolet radiation-induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice. Cancer Res. 60, 3738-3743. – reference: Kazianis, S., L. Gan, L. Della Coletta, B. Santi, D. C. Morizot and R. S. Nairn (1998) Cloning and comparative sequence analysis of TP53 in Xiphophorus fish hybrid melanoma models. Gene 212, 31-38. – reference: Koh, H. K. (1991) Cutaneous melanoma. N. Engl. J. Med. 325, 171-182. – reference: De Fabo, E. C., F. P. Noonan, T. Fears and G. Merlino (2004) Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer Res. 64, 6372-6376. – reference: Kraemer, K. H., D. D. Levy, C. N. Parris, E. M. Gozukara, S. Moriwaki, S. Adelberg and M. M. Seidman (1994) Xeroderma pigmentosum and related disorders: Examining the linkage between defective DNA repair and cancer. J. Invest. Dermatol. 103, 96S-101S. – reference: Collins, A. R. and I. Gaivao (2007) DNA base excision repair as a biomarker in molecular epidemiology studies. Mol. Aspects Med. 28, 307-322. – reference: Mitchell, D. L., R. S. Nairn, D. A. Johnston, M. Byrom, S. Kazianis and R. B. Walter (2004) Decreased levels of (6-4) photoproduct excision repair in hybrid fish of the genus Xiphophorus. Photochem. Photobiol. 79, 447-452. – reference: Wei, Q., J. E. Lee, J. E. Gershenwald, M. I. Ross, P. F. Mansfield, S. S. Strom, L. E. Wang, Z. Guo, Y. Qiao, C. I. Amos, M. R. Spitz and M. Duvic (2003) Repair of UV light-induced DNA damage and risk of cutaneous malignant melanoma. J. Natl. Cancer Inst. 95, 308-315. – reference: Pleasance, E. D., R. K. Cheetham, P. J. Stephens, D. J. McBride, S. J. Humphray, C. D. Greenman, I. Varela, M. L. Lin, G. R. Ordonez, G. R. Bignell, K. Ye, J. Alipaz, M. J. Bauer, D. Beare, A. Butler, R. J. Carter, L. Chen, A. J. Cox, S. Edkins, P. I. Kokko-Gonzales, N. A. Gormley, R. J. Grocock, C. D. Haudenschild, M. M. Hims, T. James, M. Jia, Z. Kingsbury, C. Leroy, J. Marshall, A. Menzies, L. J. Mudie, Z. Ning, T. Royce, O. B. Schulz-Trieglaff, A. Spiridou, L. A. Stebbings, L. Szajkowski, J. Teague, D. Williamson, L. Chin, M. T. Ross, P. J. Campbell, D. R. Bentley, P. A. Futreal and M. R. Stratton (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191-196. – reference: Whiteman, D., P. Watt, D. Purdie, M. Hughes, N. Hayward and A. Green (2003) Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. J. Natl. Cancer Inst. 95, 806-812. – reference: Wang, L. E., P. Xiong, S. S. Strom, L. H. Goldberg, J. E. Lee, M. I. Ross, P. F. Mansfield, J. E. Gershenwald, V. G. Prieto, J. N. Cormier, M. Duvic, G. L. Clayman, R. S. Weber, S. M. Lippman, C. I. Amos, M. R. Spitz and Q. Wei (2005) In vitro sensitivity to ultraviolet B light and skin cancer risk: A case-control analysis. J. Natl. Cancer Inst. 97, 1822-1831. – reference: Lachiewicz, A., M. Berwick, C. Wiggins and N. Thomas (2007) Epidemiologic support for melanoma heterogeneity using the Surveillance, Epidemiology, and End Results Program. J. Invest. Dermatol. 128, 243-245. – reference: Sancar, A. (1996) DNA excision repair. Annu. Rev. Biochem. 65, 43-81. – reference: Wood, S. R., M. Berwick, R. D. Ley, R. B. Walter, R. B. Setlow and G. S. Timmins (2006) UV causation of melanoma in Xiphophorus is dominated by melanin photosensitized oxidant production. Proc. Natl. Acad. Sci. U S A 103, 4111-4115. – reference: Wang, L. E., T. C. Hsu, P. Xiong, S. S. Strom, M. Duvic, G. L. Clayman, R. S. Weber, S. M. Lippman, L. H. Goldberg and Q. Wei (2007) 4-Nitroquinoline-1-oxide-induced mutagen sensitivity and risk of nonmelanoma skin cancer: A case-control analysis. J. Invest. Dermatol. 127, 196-205. – reference: Mitchell, D. L., L. Paniker and T. Douki (2009) DNA damage, repair and photoadaptation in a Xiphophorus fish hybrid. Photochem. Photobiol. 85, 1384-1390. – reference: Rass, K. and J. Reichrath (2008) UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer. Adv. Exp. Med. Biol. 624, 162-178. – reference: Savery, N. J. (2007) The molecular mechanism of transcription-coupled DNA repair. Trends Microbiol. 15, 326-333. – reference: Mitchell, D. L., A. A. Fernandez, R. S. Nairn, R. Garcia, L. Paniker, D. Trono, H. D. Thames and I. Gimenez-Conti (2010) Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model. Proc. Natl. Acad. Sci. U S A 107, 9329-9334. – reference: Curtin, J. A., J. Fridlyand, T. Kageshita, H. N. Patel, K. J. Busam, H. Kutzner, K. H. Cho, S. Aiba, E. B. Brocker, P. E. LeBoit, D. Pinkel and B. C. Bastian (2005) Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353, 2135-2147. – volume: 624 start-page: 162 year: 2008 end-page: 178 article-title: UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer publication-title: Adv. Exp. Med. Biol. – volume: 70 start-page: 4922 year: 2010 end-page: 4930 article-title: Similar nucleotide excision repair capacity in melanocytes and melanoma cells publication-title: Cancer Res. – year: 2009 – volume: 60 start-page: 3738 year: 2000 end-page: 3743 article-title: Accelerated ultraviolet radiation‐induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice publication-title: Cancer Res. – volume: 212 start-page: 31 year: 1998 end-page: 38 article-title: Cloning and comparative sequence analysis of TP53 in fish hybrid melanoma models publication-title: Gene – volume: 107 start-page: 9329 year: 2010 end-page: 9334 article-title: Ultraviolet A does not induce melanomas in a hybrid fish model publication-title: Proc. Natl. Acad. Sci. U S A – volume: 47 start-page: 150 year: 1928 end-page: 158 article-title: Über bastarde der Teleostier Platyopoecilus und publication-title: Z. Indukt. Abstamm. Vererbungsl. – volume: 22 start-page: 654 year: 2006 end-page: 661 article-title: From Mendelian to molecular genetics: The melanoma model publication-title: Trends Genet. – volume: 325 start-page: 171 year: 1991 end-page: 182 article-title: Cutaneous melanoma publication-title: N. Engl. J. Med. – volume: 12 start-page: 253 year: 1927 end-page: 283 article-title: The genetics of viviparous top‐minnow Platypoecilus: The inheritance of two kinds of melanophores publication-title: Genetics – volume: 34 start-page: 546 year: 2007 end-page: 554 article-title: The RTK/RAS/BRAF/PI3K pathways in melanoma: Biology, small molecule inhibitors, and potential applications publication-title: Semin. Oncol. – volume: 103 start-page: 4111 year: 2006 end-page: 4115 article-title: UV causation of melanoma in is dominated by melanin photosensitized oxidant production publication-title: Proc. Natl. Acad. Sci. U S A – volume: 64 start-page: 6372 year: 2004 end-page: 6376 article-title: Ultraviolet B but not ultraviolet A radiation initiates melanoma publication-title: Cancer Res. – volume: 116 start-page: 209 year: 2001 end-page: 215 article-title: Effects of chronic exposure to ultraviolet B radiation on DNA repair in the dermis and epidermis of the hairless mouse publication-title: J. Invest. Dermatol. – volume: 79 start-page: 447 year: 2004 end-page: 452 article-title: Decreased levels of (6–4) photoproduct excision repair in hybrid fish of the genus publication-title: Photochem. Photobiol. – start-page: 239 year: 2006 end-page: 249 – volume: 23 start-page: 314 year: 2010 end-page: 337 article-title: Genetic and environmental melanoma models in fish publication-title: Pigment Cell Melanoma Res. – volume: 463 start-page: 191 year: 2010 end-page: 196 article-title: A comprehensive catalogue of somatic mutations from a human cancer genome publication-title: Nature – volume: 85 start-page: 1384 year: 2009 end-page: 1390 article-title: DNA damage, repair and photoadaptation in a fish hybrid publication-title: Photochem. Photobiol. – volume: 353 start-page: 2135 year: 2005 end-page: 2147 article-title: Distinct sets of genetic alterations in melanoma publication-title: N. Engl. J. Med. – volume: 4 start-page: 841 year: 2008 end-page: 856 article-title: Cutaneous melanoma: How does ultraviolet light contribute to melanocyte transformation? publication-title: Future Oncol. – start-page: 73 year: 1996 end-page: 85 – volume: 95 start-page: 806 year: 2003 end-page: 812 article-title: Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma publication-title: J. Natl. Cancer Inst. – volume: 65 start-page: 43 year: 1996 end-page: 81 article-title: DNA excision repair publication-title: Annu. Rev. Biochem. – volume: 86 start-page: 8922 year: 1989 end-page: 8926 article-title: Animal model for ultraviolet radiation‐induced melanoma: Platyfish‐swordtail hybrid publication-title: Proc. Natl. Acad. Sci. U S A – volume: 101 start-page: 1316 year: 2009 end-page: 1323 article-title: Inter‐individual variation in nucleotide excision repair in young adults: Effects of age, adiposity, micronutrient supplementation and genotype publication-title: Br. J. Nutr. – volume: 2006 start-page: pe13 year: 2006 article-title: The age of skin cancers publication-title: Sci. Aging Knowl. Environ. – volume: 128 start-page: 243 year: 2007 end-page: 245 article-title: Epidemiologic support for melanoma heterogeneity using the Surveillance, Epidemiology, and End Results Program publication-title: J. Invest. Dermatol. – volume: 56 start-page: 853 year: 1994 end-page: 857 article-title: Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes publication-title: Int. J. Cancer – volume: 28 start-page: 307 year: 2007 end-page: 322 article-title: DNA base excision repair as a biomarker in molecular epidemiology studies publication-title: Mol. Aspects Med. – volume: 25 start-page: 45 year: 2009 end-page: 52 article-title: Comet assay‐based methods for measuring DNA repair in vitro; estimates of inter‐ and intra‐individual variation publication-title: Cell Biol. Toxicol. – volume: 15 start-page: 326 year: 2007 end-page: 333 article-title: The molecular mechanism of transcription‐coupled DNA repair publication-title: Trends Microbiol. – volume: 12 start-page: 3467 year: 1998 end-page: 3481 article-title: Malignant melanoma: Modern black plague and genetic black box publication-title: Genes Dev. – volume: 93 start-page: 678 year: 2001 end-page: 683 article-title: Recent trends in cutaneous melanoma incidence among whites in the United States publication-title: J. Natl. Cancer Inst. – volume: 59 start-page: 2875 year: 1999 end-page: 2884 article-title: Effects of chronic low‐dose ultraviolet B radiation on DNA damage and repair in mouse skin publication-title: Cancer Res. – volume: 95 start-page: 308 year: 2003 end-page: 315 article-title: Repair of UV light‐induced DNA damage and risk of cutaneous malignant melanoma publication-title: J. Natl. Cancer Inst. – volume: 21 start-page: 453 year: 2000 end-page: 460 article-title: Nucleotide excision repair and human syndromes publication-title: Carcinogenesis – volume: 30 start-page: 1735 year: 2009 end-page: 1743 article-title: DNA repair gene polymorphisms and risk of cutaneous melanoma: A systematic review and meta‐analysis publication-title: Carcinogenesis – volume: 103 start-page: 96S year: 1994 end-page: 101S article-title: Xeroderma pigmentosum and related disorders: Examining the linkage between defective DNA repair and cancer publication-title: J. Invest. Dermatol. – volume: 127 start-page: 196 year: 2007 end-page: 205 article-title: 4‐Nitroquinoline‐1‐oxide‐induced mutagen sensitivity and risk of nonmelanoma skin cancer: A case‐control analysis publication-title: J. Invest. Dermatol. – volume: 124 start-page: 999 year: 2009 end-page: 1007 article-title: DNA repair phenotype and cancer susceptibility—A mini review publication-title: Int. J. Cancer – start-page: 262 year: 2010 end-page: 269 – volume: 90 start-page: 6666 year: 1993 end-page: 6670 article-title: Wavelengths effective in induction of malignant melanoma publication-title: Proc. Natl. Acad. Sci. U S A – volume: 97 start-page: 1822 year: 2005 end-page: 1831 article-title: In vitro sensitivity to ultraviolet B light and skin cancer risk: A case‐control analysis publication-title: J. Natl. Cancer Inst. – volume: 153 start-page: 1385 year: 1999 end-page: 1394 article-title: Melanoma loss‐of‐function mutants in caused by ‐oncogene deletion and gene disruption by a transposable element publication-title: Genetics – ident: e_1_2_6_27_2 doi: 10.1126/sageke.2006.9.pe13 – ident: e_1_2_6_40_2 doi: 10.1016/S0378-1119(98)00144-9 – ident: e_1_2_6_5_2 doi: 10.1158/0008-5472.CAN-04-1454 – ident: e_1_2_6_30_2 doi: 10.1093/jnci/93.9.678 – ident: e_1_2_6_17_2 doi: 10.1093/carcin/21.3.453 – ident: e_1_2_6_2_2 doi: 10.1101/gad.12.22.3467 – start-page: 262 volume-title: Cancer Medicine year: 2010 ident: e_1_2_6_15_2 – ident: e_1_2_6_19_2 doi: 10.1073/pnas.86.22.8922 – ident: e_1_2_6_44_2 doi: 10.1007/s10565-007-9047-5 – ident: e_1_2_6_28_2 doi: 10.1002/ijc.24126 – volume: 59 start-page: 2875 year: 1999 ident: e_1_2_6_25_2 article-title: Effects of chronic low‐dose ultraviolet B radiation on DNA damage and repair in mouse skin publication-title: Cancer Res. – ident: e_1_2_6_32_2 doi: 10.1158/0008-5472.CAN-10-0095 – ident: e_1_2_6_21_2 doi: 10.1093/genetics/153.3.1385 – ident: e_1_2_6_8_2 doi: 10.1111/1523-1747.ep12399329 – ident: e_1_2_6_29_2 doi: 10.1007/978-0-387-77574-6_13 – ident: e_1_2_6_7_2 doi: 10.1073/pnas.0511248103 – ident: e_1_2_6_20_2 doi: 10.1111/j.1751-1097.2004.tb00033.x – ident: e_1_2_6_24_2 doi: 10.1046/j.1523-1747.2001.01192.x – ident: e_1_2_6_43_2 doi: 10.1016/j.mam.2007.05.005 – ident: e_1_2_6_10_2 doi: 10.1007/BF01956394 – ident: e_1_2_6_37_2 doi: 10.1093/jnci/dji429 – ident: e_1_2_6_18_2 doi: 10.1073/pnas.90.14.6666 – ident: e_1_2_6_26_2 – volume: 60 start-page: 3738 year: 2000 ident: e_1_2_6_41_2 article-title: Accelerated ultraviolet radiation‐induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice publication-title: Cancer Res. – ident: e_1_2_6_11_2 doi: 10.1111/j.1755-148X.2010.00693.x – ident: e_1_2_6_13_2 doi: 10.1002/ijc.2910560617 – ident: e_1_2_6_35_2 doi: 10.1093/jnci/95.11.806 – ident: e_1_2_6_36_2 doi: 10.1056/NEJMoa050092 – ident: e_1_2_6_23_2 doi: 10.1385/1-59259-973-7:239 – ident: e_1_2_6_38_2 doi: 10.1038/sj.jid.5700481 – ident: e_1_2_6_4_2 doi: 10.2217/14796694.4.6.841 – ident: e_1_2_6_16_2 doi: 10.1146/annurev.bi.65.070196.000355 – volume: 12 start-page: 253 year: 1927 ident: e_1_2_6_9_2 article-title: The genetics of viviparous top‐minnow Platypoecilus: The inheritance of two kinds of melanophores publication-title: Genetics doi: 10.1093/genetics/12.3.253 – ident: e_1_2_6_3_2 doi: 10.1056/NEJM199107183250306 – ident: e_1_2_6_22_2 doi: 10.1007/978-1-4899-0301-3_6 – ident: e_1_2_6_39_2 doi: 10.1093/jnci/95.4.308 – ident: e_1_2_6_14_2 doi: 10.1016/j.tig.2006.09.013 – ident: e_1_2_6_31_2 doi: 10.1038/sj.jid.5701028 – ident: e_1_2_6_34_2 doi: 10.1016/j.tim.2007.05.005 – ident: e_1_2_6_6_2 doi: 10.1073/pnas.1000324107 – ident: e_1_2_6_42_2 doi: 10.1111/j.1751-1097.2009.00591.x – ident: e_1_2_6_46_2 doi: 10.1093/carcin/bgp207 – ident: e_1_2_6_33_2 doi: 10.1038/nature08658 – ident: e_1_2_6_12_2 doi: 10.1053/j.seminoncol.2007.09.011 – ident: e_1_2_6_45_2 doi: 10.1017/S0007114508076265 – reference: 8811174 - Annu Rev Biochem. 1996;65:43-81 – reference: 1805813 - N Engl J Med. 1991 Jul 18;325(3):171-82 – reference: 12783935 - J Natl Cancer Inst. 2003 Jun 4;95(11):806-12 – reference: 20439744 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9329-34 – reference: 10545466 - Genetics. 1999 Nov;153(3):1385-94 – reference: 16841033 - J Invest Dermatol. 2007 Jan;127(1):196-205 – reference: 10688865 - Carcinogenesis. 2000 Mar;21(3):453-60 – reference: 19086850 - Future Oncol. 2008 Dec;4(6):841-56 – reference: 20016485 - Nature. 2010 Jan 14;463(7278):191-6 – reference: 17659329 - Mol Aspects Med. 2007 Jun-Aug;28(3-4):307-22 – reference: 10383149 - Cancer Res. 1999 Jun 15;59(12):2875-84 – reference: 9661661 - Gene. 1998 May 28;212(1):31-8 – reference: 16723638 - Sci Aging Knowledge Environ. 2006 May 15;2006(9):pe13 – reference: 16368944 - J Natl Cancer Inst. 2005 Dec 21;97(24):1822-31 – reference: 17713570 - J Invest Dermatol. 2008 Jan;128(1):243-5 – reference: 19065660 - Int J Cancer. 2009 Mar 1;124(5):999-1007 – reference: 11333289 - J Natl Cancer Inst. 2001 May 2;93(9):678-83 – reference: 18058031 - Cell Biol Toxicol. 2009 Feb;25(1):45-52 – reference: 20230482 - Pigment Cell Melanoma Res. 2010 Jun;23(3):314-37 – reference: 2813430 - Proc Natl Acad Sci U S A. 1989 Nov;86(22):8922-6 – reference: 18838045 - Br J Nutr. 2009 May;101(9):1316-23 – reference: 19706646 - Carcinogenesis. 2009 Oct;30(10):1735-43 – reference: 12591987 - J Natl Cancer Inst. 2003 Feb 19;95(4):308-15 – reference: 17034900 - Trends Genet. 2006 Dec;22(12):654-61 – reference: 16537493 - Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4111-5 – reference: 16291983 - N Engl J Med. 2005 Nov 17;353(20):2135-47 – reference: 18348455 - Adv Exp Med Biol. 2008;624:162-78 – reference: 17572090 - Trends Microbiol. 2007 Jul;15(7):326-33 – reference: 18083378 - Semin Oncol. 2007 Dec;34(6):546-54 – reference: 7963692 - J Invest Dermatol. 1994 Nov;103(5 Suppl):96S-101S – reference: 20501836 - Cancer Res. 2010 Jun 15;70(12):4922-30 – reference: 8341684 - Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6666-70 – reference: 10919643 - Cancer Res. 2000 Jul 15;60(14):3738-43 – reference: 9832500 - Genes Dev. 1998 Nov 15;12(22):3467-81 – reference: 15191054 - Photochem Photobiol. 2004 May;79(5):447-52 – reference: 19656328 - Photochem Photobiol. 2009 Nov-Dec;85(6):1384-90 – reference: 16673886 - Methods Mol Biol. 2006;314:239-49 – reference: 15374941 - Cancer Res. 2004 Sep 15;64(18):6372-6 – reference: 11179995 - J Invest Dermatol. 2001 Feb;116(2):209-15 – reference: 7509778 - Int J Cancer. 1994 Mar 15;56(6):853-7 – reference: 17246524 - Genetics. 1927 May;12(3):253-83 |
SSID | ssj0014971 |
Score | 1.9977362 |
Snippet | Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure... |
SourceID | pubmedcentral proquest pubmed crossref wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 335 |
SubjectTerms | Age Factors Animals Cell cycle Cyprinodontiformes Deoxyribonucleic acid Disease Models, Animal DNA DNA repair DNA Repair - genetics Genetic Variation Human subjects Irradiation Melanoma Melanoma, Experimental Population genetics Population studies Risk Factors Sex Factors Skin cancer Skin Neoplasms Ultraviolet Rays Xiphophorus |
Title | An Experimental Population Study of Nucleotide Excision Repair as a Risk Factor for UVB-induced Melanoma |
URI | https://api.istex.fr/ark:/67375/WNG-75T01H2H-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1751-1097.2010.00875.x https://www.ncbi.nlm.nih.gov/pubmed/21143485 https://www.proquest.com/docview/860800267 https://www.proquest.com/docview/855202003 https://www.proquest.com/docview/902338869 https://pubmed.ncbi.nlm.nih.gov/PMC3437770 |
Volume | 87 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQEdANj-EVCsgLxC6jJI7jeFlKhwhpRqOqQ7uL7MRRw5SkmofUsuIT-Ea-hHvjJJopRaoQu0i2o-T62j7XPj6XkHewpqsc1klXRbhbJXnmaq6l64tChkGWx6zAu8PjSZTMws-n_LTlP-FdGKsP0W-44cho5msc4Eovtwe54EjHkqJjaAH2HiKe9FmEMvofj3olKYgDhE2ex3wX72JeI_Xc9KKtleouGv3yJhj6J5tyE-U2y9ToEZl3P2jZKfPheqWH2fdr2o__xwKPycMWzdJ9635PyB1TDcg9m9_yakAeHHTp5Abk_rg9xX9Kvu5X9HAjswCd9lnEKPIar2hd0AkKLderMjdQ1-YBohAtqHJB1ZIqelQu53TUZAuiALzp7MuHXz9-llUOvprTsTlXVf1NPSOz0eHxQeK2OR_cDHVuXASgkuVM5EZ7WjJmWMSNF2qReUYHnomyIDNFLKSfh4EOlDZ5JAH1ZtyqmT0nO1VdmZeEGllAMCmUCowM4xwmqgjFzkwIM40E2OIQ0fVvmrWC6JiX4zzdCIzAwPaQHg2cNgZOLx3i9y0vrCjILdq8b1yob6AWcyTVQdnJ5FMq-LHnJ0GSnjhkr_OxtJ1PlmkcNcg-Eg6hfSl0IJ7uqMrUa6jCeeAh1fDvVSQANBbHkXTIC-uz_dcEEBezMOZglC1v7iugDPl2SVWeNXLkLGRCCM8hvHHWW1sknSZTeHj1j-32yK7d30c-4Guys1qszRsAiCv9thn6vwETPVT4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5Cm2C8cCm3MC5-QLylSuI4jh_HWAmwVtXUsr1FTuKK0pKiXqSNJ34Cv5FfwjlxGrVjSBPirZLtKD05Pv6Offx9AK9wTdcFrpOujmi3SonczUSmXF-OVBjkRcxHdHe424uSYfjhTJzVckB0F8byQzQbbjQzqnhNE5w2pLdnuRRUj6XkukQLwXcbAeVuiLiDMrG3Jw2XFGYC0srncd-l25iXynquetLWWrVLZj-_Coj-WU-5iXOrhapzF6brv2jrUybt1TJr598vsT_-Jxvcgzs1oGUH1gPvww1TtuCmlbi8aMHe4VpRrgW3uvVB_gP4clCyow1xAdZvhMQYlTZesNmI9YhrebYcFwb7WikghgmDHs-ZXjDNTsaLCetUgkEMsTcbfnrz68fPcVmguxasa6a6nH3VD2HYORocJm4t--DmRHXjEgZVvOCyMJmXKc4Nj4TxwkzmnskCz0R5kJtRLJVfhEEW6MwUkULgmwtLaPYIdspZaZ4AM2qE-aTUOjAqjAuMVRHxnZkQg41C5OKAXH_gNK850UmaY5pu5EZoYHtOTwZOKwOn5w74zchvlhfkGmNeVz7UDNDzCdXVYdtp710qxcDzkyBJTx3YXztZWoeURRpHFbiPpAOsacUPSAc8ujSzFXYRIvCo2vDvXRRiNB7HkXLgsXXa5m0CTI15GAs0ypY7Nx2IiXy7pRx_rhjJecillJ4DovLWa1sk7Sd9_PH0H8e9hL1k0D1Oj9_3Pu7DbbvdT-WBz2BnOV-Z54gXl9mLKg78BmG-WRc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5Cmxi8cCm3MC5-QLylSuM4jh_HWCmXVtW0sr1FTuyI0pFOvUgbT_wEfiO_hHPiNGrHkCbEWyXbUXpyfPwd-_N3AF7hmq4NrpO-jmm3Soncz0Sm_I4sVBTmJuEF3R3uD-LeKPpwIk5q_hPdhXH6EM2GG82MKl7TBD8zxeYkl4LoWEquGFqIvduIJ7ejGIEFAaTDRkoKEwHpqufxjk-XMS-xeq560sZStU1WP78Kh_5Jp1yHudU61b0Lk9U_dPSUSXu5yNr590vij__HBPfgTg1n2Z7zv_tww5YtuOkKXF604Nb-qp5cC3b69TH-A_i6V7KDtdICbNiUEWNEbLxg04INSGl5uhgbi31dISCG6YIez5ieM80Ox_MJ61blghgibzb6_ObXj5_j0qCzGta3p7qcftMPYdQ9ONrv-XXRBz8noRufEKjihktjsyBTnFseCxtEmcwDm4WBjfMwt0UiVcdEYRbqzJpYIezNhZMzewRb5bS0T4BZVWA2KbUOrYoSg5EqJrUzG2GoUYhbPJCr75vmtSI6FeY4TdcyIzSwO6UnA6eVgdNzDzrNyDOnCnKNMa8rF2oG6NmEWHXYdjx4l0pxFHR6YS899mB35WNpHVDmaRJX0D6WHrCmFT8gHe_o0k6X2EWIMCCu4d-7KERoPEli5cFj57PN24SYGPMoEWiUDW9uOpAO-WZLOf5S6ZHziEspAw9E5azXtkg67A3xx9N_HPcSdoZvu-mn94OPu3Db7fUTN_AZbC1mS_scweIie1FFgd_4NlfG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Experimental+Population+Study+of+Nucleotide+Excision+Repair+as+a+Risk+Factor+for+UVB-induced+Melanoma&rft.jtitle=Photochemistry+and+photobiology&rft.au=Fernandez%2C+Andr%C3%A9+A.&rft.au=Garcia%2C+Rachel&rft.au=Paniker%2C+Lakshmi&rft.au=Trono%2C+David&rft.date=2011-03-01&rft.issn=0031-8655&rft.eissn=1751-1097&rft.volume=87&rft.issue=2&rft.spage=335&rft.epage=341&rft_id=info:doi/10.1111%2Fj.1751-1097.2010.00875.x&rft_id=info%3Apmid%2F21143485&rft.externalDocID=PMC3437770 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8655&client=summon |