An Experimental Population Study of Nucleotide Excision Repair as a Risk Factor for UVB-induced Melanoma

Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in situ and in vitro studies consistently yield equivocal results when addressing individual DNA repair capacity...

Full description

Saved in:
Bibliographic Details
Published inPhotochemistry and photobiology Vol. 87; no. 2; pp. 335 - 341
Main Authors Fernandez, André A., Garcia, Rachel, Paniker, Lakshmi, Trono, David, Mitchell, David L.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.03.2011
Subjects
Online AccessGet full text
ISSN0031-8655
1751-1097
1751-1097
DOI10.1111/j.1751-1097.2010.00875.x

Cover

Abstract Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in situ and in vitro studies consistently yield equivocal results when addressing individual DNA repair capacity and melanoma susceptibility. The primary objective of this study was to determine if individual global NER capacity is a risk factor for melanoma formation in a prominent UVB‐inducible melanoma model, hybrid Xiphophorus fishes. After neonatal UVB irradiation, adult tumor‐bearing and tumor‐free fish were given a challenge UVB dose and (6–4) photoproduct repair was quantified in individual fish at 24 h using radioimmunoassay. Despite considerable inter‐individual variation in repair capacity, ranging from 13% to 91%, we found no difference in mean NER capacity between fish with and without melanomas, thus detaching global NER from melanomagenesis. Furthermore, despite epidemiological data indicating that sex and age are important risk factors underlying melanoma susceptibility, we found no difference in mean NER rates among the sexes or as a function of age. We conclude with a discussion of the apparent paradox of how inter‐individual variation in NER is not a risk factor given the clear evidence that DNA damage underlies melanoma susceptibility.
AbstractList Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in situ and in vitro studies consistently yield equivocal results when addressing individual DNA repair capacity and melanoma susceptibility. The primary objective of this study was to determine if individual global NER capacity is a risk factor for melanoma formation in a prominent UVB‐inducible melanoma model, hybrid Xiphophorus fishes. After neonatal UVB irradiation, adult tumor‐bearing and tumor‐free fish were given a challenge UVB dose and (6–4) photoproduct repair was quantified in individual fish at 24 h using radioimmunoassay. Despite considerable inter‐individual variation in repair capacity, ranging from 13% to 91%, we found no difference in mean NER capacity between fish with and without melanomas, thus detaching global NER from melanomagenesis. Furthermore, despite epidemiological data indicating that sex and age are important risk factors underlying melanoma susceptibility, we found no difference in mean NER rates among the sexes or as a function of age. We conclude with a discussion of the apparent paradox of how inter‐individual variation in NER is not a risk factor given the clear evidence that DNA damage underlies melanoma susceptibility.
Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in situ and in vitro studies consistently yield equivocal results when addressing individual DNA repair capacity and melanoma susceptibility. The primary objective of this study was to determine if individual global NER capacity is a risk factor for melanoma formation in a prominent UVB-inducible melanoma model, hybrid Xiphophorus fishes. After neonatal UVB irradiation, adult tumor-bearing and tumor-free fish were given a challenge UVB dose and (6-4) photoproduct repair was quantified in individual fish at 24 h using radioimmunoassay. Despite considerable inter-individual variation in repair capacity, ranging from 13% to 91%, we found no difference in mean NER capacity between fish with and without melanomas, thus detaching global NER from melanomagenesis. Furthermore, despite epidemiological data indicating that sex and age are important risk factors underlying melanoma susceptibility, we found no difference in mean NER rates among the sexes or as a function of age. We conclude with a discussion of the apparent paradox of how inter-individual variation in NER is not a risk factor given the clear evidence that DNA damage underlies melanoma susceptibility.Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in situ and in vitro studies consistently yield equivocal results when addressing individual DNA repair capacity and melanoma susceptibility. The primary objective of this study was to determine if individual global NER capacity is a risk factor for melanoma formation in a prominent UVB-inducible melanoma model, hybrid Xiphophorus fishes. After neonatal UVB irradiation, adult tumor-bearing and tumor-free fish were given a challenge UVB dose and (6-4) photoproduct repair was quantified in individual fish at 24 h using radioimmunoassay. Despite considerable inter-individual variation in repair capacity, ranging from 13% to 91%, we found no difference in mean NER capacity between fish with and without melanomas, thus detaching global NER from melanomagenesis. Furthermore, despite epidemiological data indicating that sex and age are important risk factors underlying melanoma susceptibility, we found no difference in mean NER rates among the sexes or as a function of age. We conclude with a discussion of the apparent paradox of how inter-individual variation in NER is not a risk factor given the clear evidence that DNA damage underlies melanoma susceptibility.
Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in situ and in vitro studies consistently yield equivocal results when addressing individual DNA repair capacity and melanoma susceptibility. The primary objective of this study was to determine if individual global NER capacity is a risk factor for melanoma formation in a prominent UVB-inducible melanoma model, hybrid Xiphophorus fishes. After neonatal UVB irradiation, adult tumor-bearing and tumor-free fish were given a challenge UVB dose and (6-4) photoproduct repair was quantified in individual fish at 24h using radioimmunoassay. Despite considerable inter-individual variation in repair capacity, ranging from 13% to 91%, we found no difference in mean NER capacity between fish with and without melanomas, thus detaching global NER from melanomagenesis. Furthermore, despite epidemiological data indicating that sex and age are important risk factors underlying melanoma susceptibility, we found no difference in mean NER rates among the sexes or as a function of age. We conclude with a discussion of the apparent paradox of how inter-individual variation in NER is not a risk factor given the clear evidence that DNA damage underlies melanoma susceptibility.
Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in-situ and in-vitro studies consistently yield equivocal results when addressing individual DNA repair capacity and melanoma susceptibility. The primary objective of this study was to determine if individual global NER capacity is a risk factor for melanoma formation in a prominent UVB inducible melanoma model, hybrid Xiphophorus fishes. After neonatal UVB irradiation, adult tumor-bearing and tumor-free fish were given a challenge UVB dose and (6-4) photoproduct repair was quantified in individual fish at 24 h using radioimmunoassay. Despite considerable inter-individual variation in repair capacity, ranging from 13% to 91%, we found no difference in mean NER capacity between fish with and without melanomas, thus detaching global NER from melanomagenesis. Furthermore, despite epidemiological data indicating that sex and age are important risk factors underlying melanoma susceptibility, we found no difference in mean NER rates among the sexes or as a function of age. We conclude with a discussion of the apparent paradox of how inter-individual variation in NER is not a risk factor given the clear evidence that DNA damage underlies melanoma susceptibility.
Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure to UVB radiation. However, in situ and in vitro studies consistently yield equivocal results when addressing individual DNA repair capacity and melanoma susceptibility. The primary objective of this study was to determine if individual global NER capacity is a risk factor for melanoma formation in a prominent UVB-inducible melanoma model, hybrid Xiphophorus fishes. After neonatal UVB irradiation, adult tumor-bearing and tumor-free fish were given a challenge UVB dose and (6-4) photoproduct repair was quantified in individual fish at 24 h using radioimmunoassay. Despite considerable inter-individual variation in repair capacity, ranging from 13% to 91%, we found no difference in mean NER capacity between fish with and without melanomas, thus detaching global NER from melanomagenesis. Furthermore, despite epidemiological data indicating that sex and age are important risk factors underlying melanoma susceptibility, we found no difference in mean NER rates among the sexes or as a function of age. We conclude with a discussion of the apparent paradox of how inter-individual variation in NER is not a risk factor given the clear evidence that DNA damage underlies melanoma susceptibility. [PUBLICATION ABSTRACT]
Author Fernandez, André A.
Mitchell, David L.
Garcia, Rachel
Trono, David
Paniker, Lakshmi
Author_xml – sequence: 1
  givenname: André A.
  surname: Fernandez
  fullname: Fernandez, André A.
  organization: Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX
– sequence: 2
  givenname: Rachel
  surname: Garcia
  fullname: Garcia, Rachel
  organization: Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX
– sequence: 3
  givenname: Lakshmi
  surname: Paniker
  fullname: Paniker, Lakshmi
  organization: Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX
– sequence: 4
  givenname: David
  surname: Trono
  fullname: Trono, David
  organization: Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX
– sequence: 5
  givenname: David L.
  surname: Mitchell
  fullname: Mitchell, David L.
  email: dmitchel@mdanderson.org
  organization: E-mail: dmitchel@mdanderson.org
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21143485$$D View this record in MEDLINE/PubMed
BookMark eNqNUl1v0zAUtdAQ6wZ_AVm88JRybcexIyGkMW0r0hjV2Nij5Ti3zF0alziB9t_j7qPAXlgkK5bvOcf3-J49stOGFgmhDMYsfe_mY6YkyxiUaswhnQJoJcerZ2S0LeyQEYBgmS6k3CV7Mc4BWF4q9oLscsZykWs5ItcHLT1aLbHzC2x729BpWA6N7X1o6dd-qNc0zOjZ4BoMva8xYZ2Pm-I5Lq3vqI3U0nMfb-ixdX3o6Cyty28fM9_Wg8OafsbGtmFhX5LnM9tEfHX_3yeXx0cXh5Ps9MvJp8OD08xJVsqMFUyWohaqxgqqUggUhUTIK-UAKw5YOO5wplXJ6pxX3FZYF6UGcBJyzrXYJx_udJdDtcDaJVedbcwyGbTd2gTrzb-V1l-b7-GnEblQSkESeHsv0IUfA8beLHx02CQbGIZoSuBCaF2U_0VqKTnwNISEfPMIOQ9D16Z3MLqA1D0vVAK9_rvzbcsPw_pjzXUhxg5nxvn-dlTJiG8MA7NJh5mbTQjMJgRmkw5zmw6zSgL6kcDDHU-gvr-j_vINrp_MM9PJNG0SPbuj-9jjaku33Y1JzhPy6uzEKHkBbMIn5kr8Bnmx320
CODEN PHCBAP
CitedBy_id crossref_primary_10_3390_ijms14011132
crossref_primary_10_3390_ijerph14060606
crossref_primary_10_1371_journal_pone_0085294
crossref_primary_10_1093_carcin_bgs152
Cites_doi 10.1126/sageke.2006.9.pe13
10.1016/S0378-1119(98)00144-9
10.1158/0008-5472.CAN-04-1454
10.1093/jnci/93.9.678
10.1093/carcin/21.3.453
10.1101/gad.12.22.3467
10.1073/pnas.86.22.8922
10.1007/s10565-007-9047-5
10.1002/ijc.24126
10.1158/0008-5472.CAN-10-0095
10.1093/genetics/153.3.1385
10.1111/1523-1747.ep12399329
10.1007/978-0-387-77574-6_13
10.1073/pnas.0511248103
10.1111/j.1751-1097.2004.tb00033.x
10.1046/j.1523-1747.2001.01192.x
10.1016/j.mam.2007.05.005
10.1007/BF01956394
10.1093/jnci/dji429
10.1073/pnas.90.14.6666
10.1111/j.1755-148X.2010.00693.x
10.1002/ijc.2910560617
10.1093/jnci/95.11.806
10.1056/NEJMoa050092
10.1385/1-59259-973-7:239
10.1038/sj.jid.5700481
10.2217/14796694.4.6.841
10.1146/annurev.bi.65.070196.000355
10.1093/genetics/12.3.253
10.1056/NEJM199107183250306
10.1007/978-1-4899-0301-3_6
10.1093/jnci/95.4.308
10.1016/j.tig.2006.09.013
10.1038/sj.jid.5701028
10.1016/j.tim.2007.05.005
10.1073/pnas.1000324107
10.1111/j.1751-1097.2009.00591.x
10.1093/carcin/bgp207
10.1038/nature08658
10.1053/j.seminoncol.2007.09.011
10.1017/S0007114508076265
ContentType Journal Article
Copyright 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology
2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
Copyright American Society for Photobiology Mar/Apr 2011
Copyright_xml – notice: 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology
– notice: 2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
– notice: Copyright American Society for Photobiology Mar/Apr 2011
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
4T-
7TM
7U7
8FD
C1K
FR3
K9.
NAPCQ
P64
RC3
7X8
5PM
DOI 10.1111/j.1751-1097.2010.00875.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Docstoc
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
Docstoc
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Nucleic Acids Abstracts

Nursing & Allied Health Premium
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
EISSN 1751-1097
EndPage 341
ExternalDocumentID PMC3437770
2313744641
21143485
10_1111_j_1751_1097_2010_00875_x
PHP875
ark_67375_WNG_75T01H2H_W
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA009480
– fundername: NCI NIH HHS
  grantid: T32 CA009480
– fundername: NCI NIH HHS
  grantid: R01 CA113671
– fundername: NCI NIH HHS
  grantid: CA11367
– fundername: NIEHS NIH HHS
  grantid: ES07784
– fundername: NIEHS NIH HHS
  grantid: P30 ES007784
GroupedDBID ---
-JH
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1OB
1OC
29O
31~
33P
3O-
3SF
4.4
41~
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5RE
5VS
66C
702
7PT
7RV
7X2
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8AO
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
8UM
8WZ
930
A03
A6W
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABUWG
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEPYG
AEUYN
AEUYR
AEYWJ
AFBPY
AFFIJ
AFFPM
AFGKR
AFKRA
AFNWH
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHMBA
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
AKPMI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BKEYQ
BLYAC
BMNLL
BNHUX
BPHCQ
BROTX
BRXPI
BSCLL
BVXVI
BY8
C1A
CAG
CCPQU
COF
CS3
D-E
D-F
DC7
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
E3Z
EBS
ECGQY
EJD
EX3
F00
F01
F04
F5P
FEDTE
FYUFA
FZ0
G-S
G.N
GNUQQ
GODZA
H.T
H.X
H13
HCIFZ
HF~
HGLYW
HMCUK
HVGLF
HZ~
H~9
IH2
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0K
M1P
M2P
M2Q
M7P
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NAPCQ
NDZJH
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PJZUB
PPXIY
PQ0
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q.N
Q11
Q2X
Q5J
QB0
R.K
RBO
RIWAO
RJQFR
ROL
RWL
RX1
S0X
SAMSI
SJN
SUPJJ
TAE
UB1
UKHRP
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WOW
WQJ
WXSBR
WYISQ
XG1
XOL
YNT
ZGI
ZXP
ZZTAW
~02
~IA
~KM
~WT
3V.
88A
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALIPV
ESX
M0L
RIG
WRC
WSB
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
4T-
7TM
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c5195-161593d37deb0b933e365e04b7c0eb20e6c2cef8791d42b2abed69800c5042283
IEDL.DBID DR2
ISSN 0031-8655
1751-1097
IngestDate Thu Aug 21 13:52:28 EDT 2025
Fri Sep 05 02:41:40 EDT 2025
Thu Sep 04 15:35:37 EDT 2025
Wed Aug 13 06:28:49 EDT 2025
Wed Feb 19 01:47:27 EST 2025
Tue Jul 01 02:14:32 EDT 2025
Thu Apr 24 23:06:50 EDT 2025
Wed Jan 22 17:05:27 EST 2025
Tue Sep 09 05:29:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2011 The Authors. Photochemistry and Photobiology © 2011 The American Society of Photobiology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5195-161593d37deb0b933e365e04b7c0eb20e6c2cef8791d42b2abed69800c5042283
Notes istex:7C6273D081EE8F0264B90A5E84885A5646F6EC0D
ArticleID:PHP875
ark:/67375/WNG-75T01H2H-W
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 21143485
PQID 860800267
PQPubID 30729
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3437770
proquest_miscellaneous_902338869
proquest_miscellaneous_855202003
proquest_journals_860800267
pubmed_primary_21143485
crossref_citationtrail_10_1111_j_1751_1097_2010_00875_x
crossref_primary_10_1111_j_1751_1097_2010_00875_x
wiley_primary_10_1111_j_1751_1097_2010_00875_x_PHP875
istex_primary_ark_67375_WNG_75T01H2H_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March/April 2011
PublicationDateYYYYMMDD 2011-03-01
PublicationDate_xml – month: 03
  year: 2011
  text: March/April 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: United States
– name: Lawrence
PublicationTitle Photochemistry and photobiology
PublicationTitleAlternate Photochem Photobiol
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Kazianis, S., L. Gan, L. Della Coletta, B. Santi, D. C. Morizot and R. S. Nairn (1998) Cloning and comparative sequence analysis of TP53 in Xiphophorus fish hybrid melanoma models. Gene 212, 31-38.
Mitchell, D. L., A. A. Fernandez, R. S. Nairn, R. Garcia, L. Paniker, D. Trono, H. D. Thames and I. Gimenez-Conti (2010) Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model. Proc. Natl. Acad. Sci. U S A 107, 9329-9334.
Desai, A., R. Krathen, I. Orengo and E. E. Medrano (2006) The age of skin cancers. Sci. Aging Knowl. Environ. 2006, pe13.
Wang, L. E., P. Xiong, S. S. Strom, L. H. Goldberg, J. E. Lee, M. I. Ross, P. F. Mansfield, J. E. Gershenwald, V. G. Prieto, J. N. Cormier, M. Duvic, G. L. Clayman, R. S. Weber, S. M. Lippman, C. I. Amos, M. R. Spitz and Q. Wei (2005) In vitro sensitivity to ultraviolet B light and skin cancer risk: A case-control analysis. J. Natl. Cancer Inst. 97, 1822-1831.
Patton, E. E., D. L. Mitchell and R. S. Nairn (2010) Genetic and environmental melanoma models in fish. Pigment Cell Melanoma Res. 23, 314-337.
Mitchell, D. L., R. S. Nairn, D. A. Johnston, M. Byrom, S. Kazianis and R. B. Walter (2004) Decreased levels of (6-4) photoproduct excision repair in hybrid fish of the genus Xiphophorus. Photochem. Photobiol. 79, 447-452.
Whiteman, D., P. Watt, D. Purdie, M. Hughes, N. Hayward and A. Green (2003) Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. J. Natl. Cancer Inst. 95, 806-812.
Mocellin, S., D. Verdi and D. Nitti (2009) DNA repair gene polymorphisms and risk of cutaneous melanoma: A systematic review and meta-analysis. Carcinogenesis 30, 1735-1743.
Chin, L., G. Merlino and R. A. DePinho (1998) Malignant melanoma: Modern black plague and genetic black box. Genes Dev. 12, 3467-3481.
Wang, L. E., T. C. Hsu, P. Xiong, S. S. Strom, M. Duvic, G. L. Clayman, R. S. Weber, S. M. Lippman, L. H. Goldberg and Q. Wei (2007) 4-Nitroquinoline-1-oxide-induced mutagen sensitivity and risk of nonmelanoma skin cancer: A case-control analysis. J. Invest. Dermatol. 127, 196-205.
Savery, N. J. (2007) The molecular mechanism of transcription-coupled DNA repair. Trends Microbiol. 15, 326-333.
Setlow, R. B., A. D. Woodhead and E. Grist (1989) Animal model for ultraviolet radiation-induced melanoma: Platyfish-swordtail hybrid. Proc. Natl. Acad. Sci. U S A 86, 8922-8926.
De Fabo, E. C., F. P. Noonan, T. Fears and G. Merlino (2004) Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer Res. 64, 6372-6376.
Gordon, M. (1927) The genetics of viviparous top-minnow Platypoecilus: The inheritance of two kinds of melanophores. Genetics 12, 253-283.
Collins, A. R. and I. Gaivao (2007) DNA base excision repair as a biomarker in molecular epidemiology studies. Mol. Aspects Med. 28, 307-322.
Rass, K. and J. Reichrath (2008) UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer. Adv. Exp. Med. Biol. 624, 162-178.
Setlow, R. B., E. Grist, K. Thompson and A. D. Woodhead (1993) Wavelengths effective in induction of malignant melanoma. Proc. Natl. Acad. Sci. U S A 90, 6666-6670.
Tyson, J., F. Caple, A. Spiers, B. Burtle, A. K. Daly, E. A. Williams, J. E. Hesketh and J. C. Mathers (2009) Inter-individual variation in nucleotide excision repair in young adults: Effects of age, adiposity, micronutrient supplementation and genotype. Br. J. Nutr. 101, 1316-1323.
Mattei, S., M. P. Colombo, C. Melani, A. Silvani, G. Parmiani and M. Herlyn (1994) Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int. J. Cancer 56, 853-857.
Schartl, M., U. Hornung, H. Gutbrod, J. N. Volff and J. Wittbrodt (1999) Melanoma loss-of-function mutants in Xiphophorus caused by Xmrk-oncogene deletion and gene disruption by a transposable element. Genetics 153, 1385-1394.
Wei, Q., J. E. Lee, J. E. Gershenwald, M. I. Ross, P. F. Mansfield, S. S. Strom, L. E. Wang, Z. Guo, Y. Qiao, C. I. Amos, M. R. Spitz and M. Duvic (2003) Repair of UV light-induced DNA damage and risk of cutaneous malignant melanoma. J. Natl. Cancer Inst. 95, 308-315.
Sancar, A. (1996) DNA excision repair. Annu. Rev. Biochem. 65, 43-81.
Noonan, F. P., T. Otsuka, S. Bang, M. R. Anver and G. Merlino (2000) Accelerated ultraviolet radiation-induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice. Cancer Res. 60, 3738-3743.
Wood, S. R., M. Berwick, R. D. Ley, R. B. Walter, R. B. Setlow and G. S. Timmins (2006) UV causation of melanoma in Xiphophorus is dominated by melanin photosensitized oxidant production. Proc. Natl. Acad. Sci. U S A 103, 4111-4115.
Li, C., L. E. Wang and Q. Wei (2009) DNA repair phenotype and cancer susceptibility-A mini review. Int. J. Cancer 124, 999-1007.
Mitchell, D. L., R. Greinert, F. R. de Gruijl, K. L. Guikers, E. W. Breitbart, M. Byrom, M. M. Gallmeier, M. G. Lowery and B. Volkmer (1999) Effects of chronic low-dose ultraviolet B radiation on DNA damage and repair in mouse skin. Cancer Res. 59, 2875-2884.
Pleasance, E. D., R. K. Cheetham, P. J. Stephens, D. J. McBride, S. J. Humphray, C. D. Greenman, I. Varela, M. L. Lin, G. R. Ordonez, G. R. Bignell, K. Ye, J. Alipaz, M. J. Bauer, D. Beare, A. Butler, R. J. Carter, L. Chen, A. J. Cox, S. Edkins, P. I. Kokko-Gonzales, N. A. Gormley, R. J. Grocock, C. D. Haudenschild, M. M. Hims, T. James, M. Jia, Z. Kingsbury, C. Leroy, J. Marshall, A. Menzies, L. J. Mudie, Z. Ning, T. Royce, O. B. Schulz-Trieglaff, A. Spiridou, L. A. Stebbings, L. Szajkowski, J. Teague, D. Williamson, L. Chin, M. T. Ross, P. J. Campbell, D. R. Bentley, P. A. Futreal and M. R. Stratton (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191-196.
de Boer, J. and J. H. Hoeijmakers (2000) Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453-460.
Meierjohann, S. and M. Schartl (2006) From Mendelian to molecular genetics: The Xiphophorus melanoma model. Trends Genet. 22, 654-661.
Gaivao, I., A. Piasek, A. Brevik, S. Shaposhnikov and A. R. Collins (2009) Comet assay-based methods for measuring DNA repair in vitro; estimates of inter- and intra-individual variation. Cell Biol. Toxicol. 25, 45-52.
Kraemer, K. H., D. D. Levy, C. N. Parris, E. M. Gozukara, S. Moriwaki, S. Adelberg and M. M. Seidman (1994) Xeroderma pigmentosum and related disorders: Examining the linkage between defective DNA repair and cancer. J. Invest. Dermatol. 103, 96S-101S.
Mitchell, D. L., M. Byrom, S. Chiarello and M. G. Lowery (2001) Effects of chronic exposure to ultraviolet B radiation on DNA repair in the dermis and epidermis of the hairless mouse. J. Invest. Dermatol. 116, 209-215.
Gaddameedhi, S., M. G. Kemp, J. T. Reardon, J. M. Shields, S. L. Smith-Roe, W. K. Kaufmann and A. Sancar (2010) Similar nucleotide excision repair capacity in melanocytes and melanoma cells. Cancer Res. 70, 4922-4930.
Mitchell, D. L., L. Paniker and T. Douki (2009) DNA damage, repair and photoadaptation in a Xiphophorus fish hybrid. Photochem. Photobiol. 85, 1384-1390.
Lachiewicz, A., M. Berwick, C. Wiggins and N. Thomas (2007) Epidemiologic support for melanoma heterogeneity using the Surveillance, Epidemiology, and End Results Program. J. Invest. Dermatol. 128, 243-245.
Curtin, J. A., J. Fridlyand, T. Kageshita, H. N. Patel, K. J. Busam, H. Kutzner, K. H. Cho, S. Aiba, E. B. Brocker, P. E. LeBoit, D. Pinkel and B. C. Bastian (2005) Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353, 2135-2147.
Jemal, A., S. S. Devesa, P. Hartge and M. A. Tucker (2001) Recent trends in cutaneous melanoma incidence among whites in the United States. J. Natl. Cancer Inst. 93, 678-683.
Koh, H. K. (1991) Cutaneous melanoma. N. Engl. J. Med. 325, 171-182.
Walker, G. (2008) Cutaneous melanoma: How does ultraviolet light contribute to melanocyte transformation? Future Oncol. 4, 841-856.
Kosswig, C. (1928) Über bastarde der Teleostier Platyopoecilus und Xiphophorus. Z. Indukt. Abstamm. Vererbungsl. 47, 150-158.
Haluska, F., T. Pemberton, N. Ibrahim and K. Kalinsky (2007) The RTK/RAS/BRAF/PI3K pathways in melanoma: Biology, small molecule inhibitors, and potential applications. Semin. Oncol. 34, 546-554.
1927; 12
2001; 93
2009; 25
2004; 64
2009; 85
1989; 86
2007; 127
2007; 128
2010; 107
2005; 353
2010
2000; 21
2009
2010; 463
1996
2008; 624
2006
1993; 90
2008; 4
2003; 95
1998; 212
2007; 34
2007; 15
2010; 23
2007; 28
2009; 30
1994; 103
1928; 47
2006; 22
1999; 59
2004; 79
1994; 56
1999; 153
2005; 97
2009; 101
2006; 2006
2009; 124
2000; 60
2010; 70
1991; 325
1998; 12
1996; 65
2006; 103
2001; 116
e_1_2_6_31_2
e_1_2_6_30_2
Gordon M. (e_1_2_6_9_2) 1927; 12
e_1_2_6_18_2
e_1_2_6_19_2
Cleaver J. E. (e_1_2_6_15_2) 2010
Noonan F. P. (e_1_2_6_41_2) 2000; 60
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_36_2
e_1_2_6_42_2
e_1_2_6_20_2
e_1_2_6_40_2
Mitchell D. L. (e_1_2_6_25_2) 1999; 59
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_22_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_27_2
e_1_2_6_44_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_46_2
20439744 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9329-34
7509778 - Int J Cancer. 1994 Mar 15;56(6):853-7
16537493 - Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4111-5
16723638 - Sci Aging Knowledge Environ. 2006 May 15;2006(9):pe13
17713570 - J Invest Dermatol. 2008 Jan;128(1):243-5
19656328 - Photochem Photobiol. 2009 Nov-Dec;85(6):1384-90
20016485 - Nature. 2010 Jan 14;463(7278):191-6
19065660 - Int J Cancer. 2009 Mar 1;124(5):999-1007
16368944 - J Natl Cancer Inst. 2005 Dec 21;97(24):1822-31
16673886 - Methods Mol Biol. 2006;314:239-49
19086850 - Future Oncol. 2008 Dec;4(6):841-56
19706646 - Carcinogenesis. 2009 Oct;30(10):1735-43
11179995 - J Invest Dermatol. 2001 Feb;116(2):209-15
18348455 - Adv Exp Med Biol. 2008;624:162-78
18838045 - Br J Nutr. 2009 May;101(9):1316-23
17246524 - Genetics. 1927 May;12(3):253-83
17034900 - Trends Genet. 2006 Dec;22(12):654-61
12783935 - J Natl Cancer Inst. 2003 Jun 4;95(11):806-12
18058031 - Cell Biol Toxicol. 2009 Feb;25(1):45-52
15191054 - Photochem Photobiol. 2004 May;79(5):447-52
20501836 - Cancer Res. 2010 Jun 15;70(12):4922-30
17659329 - Mol Aspects Med. 2007 Jun-Aug;28(3-4):307-22
18083378 - Semin Oncol. 2007 Dec;34(6):546-54
15374941 - Cancer Res. 2004 Sep 15;64(18):6372-6
8811174 - Annu Rev Biochem. 1996;65:43-81
9661661 - Gene. 1998 May 28;212(1):31-8
17572090 - Trends Microbiol. 2007 Jul;15(7):326-33
8341684 - Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6666-70
10383149 - Cancer Res. 1999 Jun 15;59(12):2875-84
7963692 - J Invest Dermatol. 1994 Nov;103(5 Suppl):96S-101S
9832500 - Genes Dev. 1998 Nov 15;12(22):3467-81
16291983 - N Engl J Med. 2005 Nov 17;353(20):2135-47
2813430 - Proc Natl Acad Sci U S A. 1989 Nov;86(22):8922-6
12591987 - J Natl Cancer Inst. 2003 Feb 19;95(4):308-15
20230482 - Pigment Cell Melanoma Res. 2010 Jun;23(3):314-37
11333289 - J Natl Cancer Inst. 2001 May 2;93(9):678-83
10919643 - Cancer Res. 2000 Jul 15;60(14):3738-43
10545466 - Genetics. 1999 Nov;153(3):1385-94
16841033 - J Invest Dermatol. 2007 Jan;127(1):196-205
10688865 - Carcinogenesis. 2000 Mar;21(3):453-60
1805813 - N Engl J Med. 1991 Jul 18;325(3):171-82
References_xml – reference: de Boer, J. and J. H. Hoeijmakers (2000) Nucleotide excision repair and human syndromes. Carcinogenesis 21, 453-460.
– reference: Mitchell, D. L., M. Byrom, S. Chiarello and M. G. Lowery (2001) Effects of chronic exposure to ultraviolet B radiation on DNA repair in the dermis and epidermis of the hairless mouse. J. Invest. Dermatol. 116, 209-215.
– reference: Mitchell, D. L., R. Greinert, F. R. de Gruijl, K. L. Guikers, E. W. Breitbart, M. Byrom, M. M. Gallmeier, M. G. Lowery and B. Volkmer (1999) Effects of chronic low-dose ultraviolet B radiation on DNA damage and repair in mouse skin. Cancer Res. 59, 2875-2884.
– reference: Walker, G. (2008) Cutaneous melanoma: How does ultraviolet light contribute to melanocyte transformation? Future Oncol. 4, 841-856.
– reference: Setlow, R. B., A. D. Woodhead and E. Grist (1989) Animal model for ultraviolet radiation-induced melanoma: Platyfish-swordtail hybrid. Proc. Natl. Acad. Sci. U S A 86, 8922-8926.
– reference: Haluska, F., T. Pemberton, N. Ibrahim and K. Kalinsky (2007) The RTK/RAS/BRAF/PI3K pathways in melanoma: Biology, small molecule inhibitors, and potential applications. Semin. Oncol. 34, 546-554.
– reference: Setlow, R. B., E. Grist, K. Thompson and A. D. Woodhead (1993) Wavelengths effective in induction of malignant melanoma. Proc. Natl. Acad. Sci. U S A 90, 6666-6670.
– reference: Mattei, S., M. P. Colombo, C. Melani, A. Silvani, G. Parmiani and M. Herlyn (1994) Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int. J. Cancer 56, 853-857.
– reference: Tyson, J., F. Caple, A. Spiers, B. Burtle, A. K. Daly, E. A. Williams, J. E. Hesketh and J. C. Mathers (2009) Inter-individual variation in nucleotide excision repair in young adults: Effects of age, adiposity, micronutrient supplementation and genotype. Br. J. Nutr. 101, 1316-1323.
– reference: Chin, L., G. Merlino and R. A. DePinho (1998) Malignant melanoma: Modern black plague and genetic black box. Genes Dev. 12, 3467-3481.
– reference: Meierjohann, S. and M. Schartl (2006) From Mendelian to molecular genetics: The Xiphophorus melanoma model. Trends Genet. 22, 654-661.
– reference: Patton, E. E., D. L. Mitchell and R. S. Nairn (2010) Genetic and environmental melanoma models in fish. Pigment Cell Melanoma Res. 23, 314-337.
– reference: Desai, A., R. Krathen, I. Orengo and E. E. Medrano (2006) The age of skin cancers. Sci. Aging Knowl. Environ. 2006, pe13.
– reference: Gaivao, I., A. Piasek, A. Brevik, S. Shaposhnikov and A. R. Collins (2009) Comet assay-based methods for measuring DNA repair in vitro; estimates of inter- and intra-individual variation. Cell Biol. Toxicol. 25, 45-52.
– reference: Gaddameedhi, S., M. G. Kemp, J. T. Reardon, J. M. Shields, S. L. Smith-Roe, W. K. Kaufmann and A. Sancar (2010) Similar nucleotide excision repair capacity in melanocytes and melanoma cells. Cancer Res. 70, 4922-4930.
– reference: Schartl, M., U. Hornung, H. Gutbrod, J. N. Volff and J. Wittbrodt (1999) Melanoma loss-of-function mutants in Xiphophorus caused by Xmrk-oncogene deletion and gene disruption by a transposable element. Genetics 153, 1385-1394.
– reference: Jemal, A., S. S. Devesa, P. Hartge and M. A. Tucker (2001) Recent trends in cutaneous melanoma incidence among whites in the United States. J. Natl. Cancer Inst. 93, 678-683.
– reference: Kosswig, C. (1928) Über bastarde der Teleostier Platyopoecilus und Xiphophorus. Z. Indukt. Abstamm. Vererbungsl. 47, 150-158.
– reference: Mocellin, S., D. Verdi and D. Nitti (2009) DNA repair gene polymorphisms and risk of cutaneous melanoma: A systematic review and meta-analysis. Carcinogenesis 30, 1735-1743.
– reference: Gordon, M. (1927) The genetics of viviparous top-minnow Platypoecilus: The inheritance of two kinds of melanophores. Genetics 12, 253-283.
– reference: Li, C., L. E. Wang and Q. Wei (2009) DNA repair phenotype and cancer susceptibility-A mini review. Int. J. Cancer 124, 999-1007.
– reference: Noonan, F. P., T. Otsuka, S. Bang, M. R. Anver and G. Merlino (2000) Accelerated ultraviolet radiation-induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice. Cancer Res. 60, 3738-3743.
– reference: Kazianis, S., L. Gan, L. Della Coletta, B. Santi, D. C. Morizot and R. S. Nairn (1998) Cloning and comparative sequence analysis of TP53 in Xiphophorus fish hybrid melanoma models. Gene 212, 31-38.
– reference: Koh, H. K. (1991) Cutaneous melanoma. N. Engl. J. Med. 325, 171-182.
– reference: De Fabo, E. C., F. P. Noonan, T. Fears and G. Merlino (2004) Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer Res. 64, 6372-6376.
– reference: Kraemer, K. H., D. D. Levy, C. N. Parris, E. M. Gozukara, S. Moriwaki, S. Adelberg and M. M. Seidman (1994) Xeroderma pigmentosum and related disorders: Examining the linkage between defective DNA repair and cancer. J. Invest. Dermatol. 103, 96S-101S.
– reference: Collins, A. R. and I. Gaivao (2007) DNA base excision repair as a biomarker in molecular epidemiology studies. Mol. Aspects Med. 28, 307-322.
– reference: Mitchell, D. L., R. S. Nairn, D. A. Johnston, M. Byrom, S. Kazianis and R. B. Walter (2004) Decreased levels of (6-4) photoproduct excision repair in hybrid fish of the genus Xiphophorus. Photochem. Photobiol. 79, 447-452.
– reference: Wei, Q., J. E. Lee, J. E. Gershenwald, M. I. Ross, P. F. Mansfield, S. S. Strom, L. E. Wang, Z. Guo, Y. Qiao, C. I. Amos, M. R. Spitz and M. Duvic (2003) Repair of UV light-induced DNA damage and risk of cutaneous malignant melanoma. J. Natl. Cancer Inst. 95, 308-315.
– reference: Pleasance, E. D., R. K. Cheetham, P. J. Stephens, D. J. McBride, S. J. Humphray, C. D. Greenman, I. Varela, M. L. Lin, G. R. Ordonez, G. R. Bignell, K. Ye, J. Alipaz, M. J. Bauer, D. Beare, A. Butler, R. J. Carter, L. Chen, A. J. Cox, S. Edkins, P. I. Kokko-Gonzales, N. A. Gormley, R. J. Grocock, C. D. Haudenschild, M. M. Hims, T. James, M. Jia, Z. Kingsbury, C. Leroy, J. Marshall, A. Menzies, L. J. Mudie, Z. Ning, T. Royce, O. B. Schulz-Trieglaff, A. Spiridou, L. A. Stebbings, L. Szajkowski, J. Teague, D. Williamson, L. Chin, M. T. Ross, P. J. Campbell, D. R. Bentley, P. A. Futreal and M. R. Stratton (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature 463, 191-196.
– reference: Whiteman, D., P. Watt, D. Purdie, M. Hughes, N. Hayward and A. Green (2003) Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma. J. Natl. Cancer Inst. 95, 806-812.
– reference: Wang, L. E., P. Xiong, S. S. Strom, L. H. Goldberg, J. E. Lee, M. I. Ross, P. F. Mansfield, J. E. Gershenwald, V. G. Prieto, J. N. Cormier, M. Duvic, G. L. Clayman, R. S. Weber, S. M. Lippman, C. I. Amos, M. R. Spitz and Q. Wei (2005) In vitro sensitivity to ultraviolet B light and skin cancer risk: A case-control analysis. J. Natl. Cancer Inst. 97, 1822-1831.
– reference: Lachiewicz, A., M. Berwick, C. Wiggins and N. Thomas (2007) Epidemiologic support for melanoma heterogeneity using the Surveillance, Epidemiology, and End Results Program. J. Invest. Dermatol. 128, 243-245.
– reference: Sancar, A. (1996) DNA excision repair. Annu. Rev. Biochem. 65, 43-81.
– reference: Wood, S. R., M. Berwick, R. D. Ley, R. B. Walter, R. B. Setlow and G. S. Timmins (2006) UV causation of melanoma in Xiphophorus is dominated by melanin photosensitized oxidant production. Proc. Natl. Acad. Sci. U S A 103, 4111-4115.
– reference: Wang, L. E., T. C. Hsu, P. Xiong, S. S. Strom, M. Duvic, G. L. Clayman, R. S. Weber, S. M. Lippman, L. H. Goldberg and Q. Wei (2007) 4-Nitroquinoline-1-oxide-induced mutagen sensitivity and risk of nonmelanoma skin cancer: A case-control analysis. J. Invest. Dermatol. 127, 196-205.
– reference: Mitchell, D. L., L. Paniker and T. Douki (2009) DNA damage, repair and photoadaptation in a Xiphophorus fish hybrid. Photochem. Photobiol. 85, 1384-1390.
– reference: Rass, K. and J. Reichrath (2008) UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer. Adv. Exp. Med. Biol. 624, 162-178.
– reference: Savery, N. J. (2007) The molecular mechanism of transcription-coupled DNA repair. Trends Microbiol. 15, 326-333.
– reference: Mitchell, D. L., A. A. Fernandez, R. S. Nairn, R. Garcia, L. Paniker, D. Trono, H. D. Thames and I. Gimenez-Conti (2010) Ultraviolet A does not induce melanomas in a Xiphophorus hybrid fish model. Proc. Natl. Acad. Sci. U S A 107, 9329-9334.
– reference: Curtin, J. A., J. Fridlyand, T. Kageshita, H. N. Patel, K. J. Busam, H. Kutzner, K. H. Cho, S. Aiba, E. B. Brocker, P. E. LeBoit, D. Pinkel and B. C. Bastian (2005) Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 353, 2135-2147.
– volume: 624
  start-page: 162
  year: 2008
  end-page: 178
  article-title: UV damage and DNA repair in malignant melanoma and nonmelanoma skin cancer
  publication-title: Adv. Exp. Med. Biol.
– volume: 70
  start-page: 4922
  year: 2010
  end-page: 4930
  article-title: Similar nucleotide excision repair capacity in melanocytes and melanoma cells
  publication-title: Cancer Res.
– year: 2009
– volume: 60
  start-page: 3738
  year: 2000
  end-page: 3743
  article-title: Accelerated ultraviolet radiation‐induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice
  publication-title: Cancer Res.
– volume: 212
  start-page: 31
  year: 1998
  end-page: 38
  article-title: Cloning and comparative sequence analysis of TP53 in fish hybrid melanoma models
  publication-title: Gene
– volume: 107
  start-page: 9329
  year: 2010
  end-page: 9334
  article-title: Ultraviolet A does not induce melanomas in a hybrid fish model
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 47
  start-page: 150
  year: 1928
  end-page: 158
  article-title: Über bastarde der Teleostier Platyopoecilus und
  publication-title: Z. Indukt. Abstamm. Vererbungsl.
– volume: 22
  start-page: 654
  year: 2006
  end-page: 661
  article-title: From Mendelian to molecular genetics: The melanoma model
  publication-title: Trends Genet.
– volume: 325
  start-page: 171
  year: 1991
  end-page: 182
  article-title: Cutaneous melanoma
  publication-title: N. Engl. J. Med.
– volume: 12
  start-page: 253
  year: 1927
  end-page: 283
  article-title: The genetics of viviparous top‐minnow Platypoecilus: The inheritance of two kinds of melanophores
  publication-title: Genetics
– volume: 34
  start-page: 546
  year: 2007
  end-page: 554
  article-title: The RTK/RAS/BRAF/PI3K pathways in melanoma: Biology, small molecule inhibitors, and potential applications
  publication-title: Semin. Oncol.
– volume: 103
  start-page: 4111
  year: 2006
  end-page: 4115
  article-title: UV causation of melanoma in is dominated by melanin photosensitized oxidant production
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 64
  start-page: 6372
  year: 2004
  end-page: 6376
  article-title: Ultraviolet B but not ultraviolet A radiation initiates melanoma
  publication-title: Cancer Res.
– volume: 116
  start-page: 209
  year: 2001
  end-page: 215
  article-title: Effects of chronic exposure to ultraviolet B radiation on DNA repair in the dermis and epidermis of the hairless mouse
  publication-title: J. Invest. Dermatol.
– volume: 79
  start-page: 447
  year: 2004
  end-page: 452
  article-title: Decreased levels of (6–4) photoproduct excision repair in hybrid fish of the genus
  publication-title: Photochem. Photobiol.
– start-page: 239
  year: 2006
  end-page: 249
– volume: 23
  start-page: 314
  year: 2010
  end-page: 337
  article-title: Genetic and environmental melanoma models in fish
  publication-title: Pigment Cell Melanoma Res.
– volume: 463
  start-page: 191
  year: 2010
  end-page: 196
  article-title: A comprehensive catalogue of somatic mutations from a human cancer genome
  publication-title: Nature
– volume: 85
  start-page: 1384
  year: 2009
  end-page: 1390
  article-title: DNA damage, repair and photoadaptation in a fish hybrid
  publication-title: Photochem. Photobiol.
– volume: 353
  start-page: 2135
  year: 2005
  end-page: 2147
  article-title: Distinct sets of genetic alterations in melanoma
  publication-title: N. Engl. J. Med.
– volume: 4
  start-page: 841
  year: 2008
  end-page: 856
  article-title: Cutaneous melanoma: How does ultraviolet light contribute to melanocyte transformation?
  publication-title: Future Oncol.
– start-page: 73
  year: 1996
  end-page: 85
– volume: 95
  start-page: 806
  year: 2003
  end-page: 812
  article-title: Melanocytic nevi, solar keratoses, and divergent pathways to cutaneous melanoma
  publication-title: J. Natl. Cancer Inst.
– volume: 65
  start-page: 43
  year: 1996
  end-page: 81
  article-title: DNA excision repair
  publication-title: Annu. Rev. Biochem.
– volume: 86
  start-page: 8922
  year: 1989
  end-page: 8926
  article-title: Animal model for ultraviolet radiation‐induced melanoma: Platyfish‐swordtail hybrid
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 101
  start-page: 1316
  year: 2009
  end-page: 1323
  article-title: Inter‐individual variation in nucleotide excision repair in young adults: Effects of age, adiposity, micronutrient supplementation and genotype
  publication-title: Br. J. Nutr.
– volume: 2006
  start-page: pe13
  year: 2006
  article-title: The age of skin cancers
  publication-title: Sci. Aging Knowl. Environ.
– volume: 128
  start-page: 243
  year: 2007
  end-page: 245
  article-title: Epidemiologic support for melanoma heterogeneity using the Surveillance, Epidemiology, and End Results Program
  publication-title: J. Invest. Dermatol.
– volume: 56
  start-page: 853
  year: 1994
  end-page: 857
  article-title: Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes
  publication-title: Int. J. Cancer
– volume: 28
  start-page: 307
  year: 2007
  end-page: 322
  article-title: DNA base excision repair as a biomarker in molecular epidemiology studies
  publication-title: Mol. Aspects Med.
– volume: 25
  start-page: 45
  year: 2009
  end-page: 52
  article-title: Comet assay‐based methods for measuring DNA repair in vitro; estimates of inter‐ and intra‐individual variation
  publication-title: Cell Biol. Toxicol.
– volume: 15
  start-page: 326
  year: 2007
  end-page: 333
  article-title: The molecular mechanism of transcription‐coupled DNA repair
  publication-title: Trends Microbiol.
– volume: 12
  start-page: 3467
  year: 1998
  end-page: 3481
  article-title: Malignant melanoma: Modern black plague and genetic black box
  publication-title: Genes Dev.
– volume: 93
  start-page: 678
  year: 2001
  end-page: 683
  article-title: Recent trends in cutaneous melanoma incidence among whites in the United States
  publication-title: J. Natl. Cancer Inst.
– volume: 59
  start-page: 2875
  year: 1999
  end-page: 2884
  article-title: Effects of chronic low‐dose ultraviolet B radiation on DNA damage and repair in mouse skin
  publication-title: Cancer Res.
– volume: 95
  start-page: 308
  year: 2003
  end-page: 315
  article-title: Repair of UV light‐induced DNA damage and risk of cutaneous malignant melanoma
  publication-title: J. Natl. Cancer Inst.
– volume: 21
  start-page: 453
  year: 2000
  end-page: 460
  article-title: Nucleotide excision repair and human syndromes
  publication-title: Carcinogenesis
– volume: 30
  start-page: 1735
  year: 2009
  end-page: 1743
  article-title: DNA repair gene polymorphisms and risk of cutaneous melanoma: A systematic review and meta‐analysis
  publication-title: Carcinogenesis
– volume: 103
  start-page: 96S
  year: 1994
  end-page: 101S
  article-title: Xeroderma pigmentosum and related disorders: Examining the linkage between defective DNA repair and cancer
  publication-title: J. Invest. Dermatol.
– volume: 127
  start-page: 196
  year: 2007
  end-page: 205
  article-title: 4‐Nitroquinoline‐1‐oxide‐induced mutagen sensitivity and risk of nonmelanoma skin cancer: A case‐control analysis
  publication-title: J. Invest. Dermatol.
– volume: 124
  start-page: 999
  year: 2009
  end-page: 1007
  article-title: DNA repair phenotype and cancer susceptibility—A mini review
  publication-title: Int. J. Cancer
– start-page: 262
  year: 2010
  end-page: 269
– volume: 90
  start-page: 6666
  year: 1993
  end-page: 6670
  article-title: Wavelengths effective in induction of malignant melanoma
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 97
  start-page: 1822
  year: 2005
  end-page: 1831
  article-title: In vitro sensitivity to ultraviolet B light and skin cancer risk: A case‐control analysis
  publication-title: J. Natl. Cancer Inst.
– volume: 153
  start-page: 1385
  year: 1999
  end-page: 1394
  article-title: Melanoma loss‐of‐function mutants in caused by ‐oncogene deletion and gene disruption by a transposable element
  publication-title: Genetics
– ident: e_1_2_6_27_2
  doi: 10.1126/sageke.2006.9.pe13
– ident: e_1_2_6_40_2
  doi: 10.1016/S0378-1119(98)00144-9
– ident: e_1_2_6_5_2
  doi: 10.1158/0008-5472.CAN-04-1454
– ident: e_1_2_6_30_2
  doi: 10.1093/jnci/93.9.678
– ident: e_1_2_6_17_2
  doi: 10.1093/carcin/21.3.453
– ident: e_1_2_6_2_2
  doi: 10.1101/gad.12.22.3467
– start-page: 262
  volume-title: Cancer Medicine
  year: 2010
  ident: e_1_2_6_15_2
– ident: e_1_2_6_19_2
  doi: 10.1073/pnas.86.22.8922
– ident: e_1_2_6_44_2
  doi: 10.1007/s10565-007-9047-5
– ident: e_1_2_6_28_2
  doi: 10.1002/ijc.24126
– volume: 59
  start-page: 2875
  year: 1999
  ident: e_1_2_6_25_2
  article-title: Effects of chronic low‐dose ultraviolet B radiation on DNA damage and repair in mouse skin
  publication-title: Cancer Res.
– ident: e_1_2_6_32_2
  doi: 10.1158/0008-5472.CAN-10-0095
– ident: e_1_2_6_21_2
  doi: 10.1093/genetics/153.3.1385
– ident: e_1_2_6_8_2
  doi: 10.1111/1523-1747.ep12399329
– ident: e_1_2_6_29_2
  doi: 10.1007/978-0-387-77574-6_13
– ident: e_1_2_6_7_2
  doi: 10.1073/pnas.0511248103
– ident: e_1_2_6_20_2
  doi: 10.1111/j.1751-1097.2004.tb00033.x
– ident: e_1_2_6_24_2
  doi: 10.1046/j.1523-1747.2001.01192.x
– ident: e_1_2_6_43_2
  doi: 10.1016/j.mam.2007.05.005
– ident: e_1_2_6_10_2
  doi: 10.1007/BF01956394
– ident: e_1_2_6_37_2
  doi: 10.1093/jnci/dji429
– ident: e_1_2_6_18_2
  doi: 10.1073/pnas.90.14.6666
– ident: e_1_2_6_26_2
– volume: 60
  start-page: 3738
  year: 2000
  ident: e_1_2_6_41_2
  article-title: Accelerated ultraviolet radiation‐induced carcinogenesis in hepatocyte growth factor/scatter factor transgenic mice
  publication-title: Cancer Res.
– ident: e_1_2_6_11_2
  doi: 10.1111/j.1755-148X.2010.00693.x
– ident: e_1_2_6_13_2
  doi: 10.1002/ijc.2910560617
– ident: e_1_2_6_35_2
  doi: 10.1093/jnci/95.11.806
– ident: e_1_2_6_36_2
  doi: 10.1056/NEJMoa050092
– ident: e_1_2_6_23_2
  doi: 10.1385/1-59259-973-7:239
– ident: e_1_2_6_38_2
  doi: 10.1038/sj.jid.5700481
– ident: e_1_2_6_4_2
  doi: 10.2217/14796694.4.6.841
– ident: e_1_2_6_16_2
  doi: 10.1146/annurev.bi.65.070196.000355
– volume: 12
  start-page: 253
  year: 1927
  ident: e_1_2_6_9_2
  article-title: The genetics of viviparous top‐minnow Platypoecilus: The inheritance of two kinds of melanophores
  publication-title: Genetics
  doi: 10.1093/genetics/12.3.253
– ident: e_1_2_6_3_2
  doi: 10.1056/NEJM199107183250306
– ident: e_1_2_6_22_2
  doi: 10.1007/978-1-4899-0301-3_6
– ident: e_1_2_6_39_2
  doi: 10.1093/jnci/95.4.308
– ident: e_1_2_6_14_2
  doi: 10.1016/j.tig.2006.09.013
– ident: e_1_2_6_31_2
  doi: 10.1038/sj.jid.5701028
– ident: e_1_2_6_34_2
  doi: 10.1016/j.tim.2007.05.005
– ident: e_1_2_6_6_2
  doi: 10.1073/pnas.1000324107
– ident: e_1_2_6_42_2
  doi: 10.1111/j.1751-1097.2009.00591.x
– ident: e_1_2_6_46_2
  doi: 10.1093/carcin/bgp207
– ident: e_1_2_6_33_2
  doi: 10.1038/nature08658
– ident: e_1_2_6_12_2
  doi: 10.1053/j.seminoncol.2007.09.011
– ident: e_1_2_6_45_2
  doi: 10.1017/S0007114508076265
– reference: 8811174 - Annu Rev Biochem. 1996;65:43-81
– reference: 1805813 - N Engl J Med. 1991 Jul 18;325(3):171-82
– reference: 12783935 - J Natl Cancer Inst. 2003 Jun 4;95(11):806-12
– reference: 20439744 - Proc Natl Acad Sci U S A. 2010 May 18;107(20):9329-34
– reference: 10545466 - Genetics. 1999 Nov;153(3):1385-94
– reference: 16841033 - J Invest Dermatol. 2007 Jan;127(1):196-205
– reference: 10688865 - Carcinogenesis. 2000 Mar;21(3):453-60
– reference: 19086850 - Future Oncol. 2008 Dec;4(6):841-56
– reference: 20016485 - Nature. 2010 Jan 14;463(7278):191-6
– reference: 17659329 - Mol Aspects Med. 2007 Jun-Aug;28(3-4):307-22
– reference: 10383149 - Cancer Res. 1999 Jun 15;59(12):2875-84
– reference: 9661661 - Gene. 1998 May 28;212(1):31-8
– reference: 16723638 - Sci Aging Knowledge Environ. 2006 May 15;2006(9):pe13
– reference: 16368944 - J Natl Cancer Inst. 2005 Dec 21;97(24):1822-31
– reference: 17713570 - J Invest Dermatol. 2008 Jan;128(1):243-5
– reference: 19065660 - Int J Cancer. 2009 Mar 1;124(5):999-1007
– reference: 11333289 - J Natl Cancer Inst. 2001 May 2;93(9):678-83
– reference: 18058031 - Cell Biol Toxicol. 2009 Feb;25(1):45-52
– reference: 20230482 - Pigment Cell Melanoma Res. 2010 Jun;23(3):314-37
– reference: 2813430 - Proc Natl Acad Sci U S A. 1989 Nov;86(22):8922-6
– reference: 18838045 - Br J Nutr. 2009 May;101(9):1316-23
– reference: 19706646 - Carcinogenesis. 2009 Oct;30(10):1735-43
– reference: 12591987 - J Natl Cancer Inst. 2003 Feb 19;95(4):308-15
– reference: 17034900 - Trends Genet. 2006 Dec;22(12):654-61
– reference: 16537493 - Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4111-5
– reference: 16291983 - N Engl J Med. 2005 Nov 17;353(20):2135-47
– reference: 18348455 - Adv Exp Med Biol. 2008;624:162-78
– reference: 17572090 - Trends Microbiol. 2007 Jul;15(7):326-33
– reference: 18083378 - Semin Oncol. 2007 Dec;34(6):546-54
– reference: 7963692 - J Invest Dermatol. 1994 Nov;103(5 Suppl):96S-101S
– reference: 20501836 - Cancer Res. 2010 Jun 15;70(12):4922-30
– reference: 8341684 - Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6666-70
– reference: 10919643 - Cancer Res. 2000 Jul 15;60(14):3738-43
– reference: 9832500 - Genes Dev. 1998 Nov 15;12(22):3467-81
– reference: 15191054 - Photochem Photobiol. 2004 May;79(5):447-52
– reference: 19656328 - Photochem Photobiol. 2009 Nov-Dec;85(6):1384-90
– reference: 16673886 - Methods Mol Biol. 2006;314:239-49
– reference: 15374941 - Cancer Res. 2004 Sep 15;64(18):6372-6
– reference: 11179995 - J Invest Dermatol. 2001 Feb;116(2):209-15
– reference: 7509778 - Int J Cancer. 1994 Mar 15;56(6):853-7
– reference: 17246524 - Genetics. 1927 May;12(3):253-83
SSID ssj0014971
Score 1.9977362
Snippet Nucleotide excision repair (NER) is the primary defense against the DNA damage implicit in skin cancer formation and is negatively affected by chronic exposure...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 335
SubjectTerms Age Factors
Animals
Cell cycle
Cyprinodontiformes
Deoxyribonucleic acid
Disease Models, Animal
DNA
DNA repair
DNA Repair - genetics
Genetic Variation
Human subjects
Irradiation
Melanoma
Melanoma, Experimental
Population genetics
Population studies
Risk Factors
Sex Factors
Skin cancer
Skin Neoplasms
Ultraviolet Rays
Xiphophorus
Title An Experimental Population Study of Nucleotide Excision Repair as a Risk Factor for UVB-induced Melanoma
URI https://api.istex.fr/ark:/67375/WNG-75T01H2H-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1751-1097.2010.00875.x
https://www.ncbi.nlm.nih.gov/pubmed/21143485
https://www.proquest.com/docview/860800267
https://www.proquest.com/docview/855202003
https://www.proquest.com/docview/902338869
https://pubmed.ncbi.nlm.nih.gov/PMC3437770
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQEdANj-EVCsgLxC6jJI7jeFlKhwhpRqOqQ7uL7MRRw5SkmofUsuIT-Ea-hHvjJJopRaoQu0i2o-T62j7XPj6XkHewpqsc1klXRbhbJXnmaq6l64tChkGWx6zAu8PjSZTMws-n_LTlP-FdGKsP0W-44cho5msc4Eovtwe54EjHkqJjaAH2HiKe9FmEMvofj3olKYgDhE2ex3wX72JeI_Xc9KKtleouGv3yJhj6J5tyE-U2y9ToEZl3P2jZKfPheqWH2fdr2o__xwKPycMWzdJ9635PyB1TDcg9m9_yakAeHHTp5Abk_rg9xX9Kvu5X9HAjswCd9lnEKPIar2hd0AkKLderMjdQ1-YBohAtqHJB1ZIqelQu53TUZAuiALzp7MuHXz9-llUOvprTsTlXVf1NPSOz0eHxQeK2OR_cDHVuXASgkuVM5EZ7WjJmWMSNF2qReUYHnomyIDNFLKSfh4EOlDZ5JAH1ZtyqmT0nO1VdmZeEGllAMCmUCowM4xwmqgjFzkwIM40E2OIQ0fVvmrWC6JiX4zzdCIzAwPaQHg2cNgZOLx3i9y0vrCjILdq8b1yob6AWcyTVQdnJ5FMq-LHnJ0GSnjhkr_OxtJ1PlmkcNcg-Eg6hfSl0IJ7uqMrUa6jCeeAh1fDvVSQANBbHkXTIC-uz_dcEEBezMOZglC1v7iugDPl2SVWeNXLkLGRCCM8hvHHWW1sknSZTeHj1j-32yK7d30c-4Guys1qszRsAiCv9thn6vwETPVT4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5Cm2C8cCm3MC5-QLylSuI4jh_HWAmwVtXUsr1FTuKK0pKiXqSNJ34Cv5FfwjlxGrVjSBPirZLtKD05Pv6Offx9AK9wTdcFrpOujmi3SonczUSmXF-OVBjkRcxHdHe424uSYfjhTJzVckB0F8byQzQbbjQzqnhNE5w2pLdnuRRUj6XkukQLwXcbAeVuiLiDMrG3Jw2XFGYC0srncd-l25iXynquetLWWrVLZj-_Coj-WU-5iXOrhapzF6brv2jrUybt1TJr598vsT_-Jxvcgzs1oGUH1gPvww1TtuCmlbi8aMHe4VpRrgW3uvVB_gP4clCyow1xAdZvhMQYlTZesNmI9YhrebYcFwb7WikghgmDHs-ZXjDNTsaLCetUgkEMsTcbfnrz68fPcVmguxasa6a6nH3VD2HYORocJm4t--DmRHXjEgZVvOCyMJmXKc4Nj4TxwkzmnskCz0R5kJtRLJVfhEEW6MwUkULgmwtLaPYIdspZaZ4AM2qE-aTUOjAqjAuMVRHxnZkQg41C5OKAXH_gNK850UmaY5pu5EZoYHtOTwZOKwOn5w74zchvlhfkGmNeVz7UDNDzCdXVYdtp710qxcDzkyBJTx3YXztZWoeURRpHFbiPpAOsacUPSAc8ujSzFXYRIvCo2vDvXRRiNB7HkXLgsXXa5m0CTI15GAs0ypY7Nx2IiXy7pRx_rhjJecillJ4DovLWa1sk7Sd9_PH0H8e9hL1k0D1Oj9_3Pu7DbbvdT-WBz2BnOV-Z54gXl9mLKg78BmG-WRc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5Cmxi8cCm3MC5-QLylSuM4jh_HWCmXVtW0sr1FTuyI0pFOvUgbT_wEfiO_hHPiNGrHkCbEWyXbUXpyfPwd-_N3AF7hmq4NrpO-jmm3Soncz0Sm_I4sVBTmJuEF3R3uD-LeKPpwIk5q_hPdhXH6EM2GG82MKl7TBD8zxeYkl4LoWEquGFqIvduIJ7ejGIEFAaTDRkoKEwHpqufxjk-XMS-xeq560sZStU1WP78Kh_5Jp1yHudU61b0Lk9U_dPSUSXu5yNr590vij__HBPfgTg1n2Z7zv_tww5YtuOkKXF604Nb-qp5cC3b69TH-A_i6V7KDtdICbNiUEWNEbLxg04INSGl5uhgbi31dISCG6YIez5ieM80Ox_MJ61blghgibzb6_ObXj5_j0qCzGta3p7qcftMPYdQ9ONrv-XXRBz8noRufEKjihktjsyBTnFseCxtEmcwDm4WBjfMwt0UiVcdEYRbqzJpYIezNhZMzewRb5bS0T4BZVWA2KbUOrYoSg5EqJrUzG2GoUYhbPJCr75vmtSI6FeY4TdcyIzSwO6UnA6eVgdNzDzrNyDOnCnKNMa8rF2oG6NmEWHXYdjx4l0pxFHR6YS899mB35WNpHVDmaRJX0D6WHrCmFT8gHe_o0k6X2EWIMCCu4d-7KERoPEli5cFj57PN24SYGPMoEWiUDW9uOpAO-WZLOf5S6ZHziEspAw9E5azXtkg67A3xx9N_HPcSdoZvu-mn94OPu3Db7fUTN_AZbC1mS_scweIie1FFgd_4NlfG
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Experimental+Population+Study+of+Nucleotide+Excision+Repair+as+a+Risk+Factor+for+UVB-induced+Melanoma&rft.jtitle=Photochemistry+and+photobiology&rft.au=Fernandez%2C+Andr%C3%A9+A.&rft.au=Garcia%2C+Rachel&rft.au=Paniker%2C+Lakshmi&rft.au=Trono%2C+David&rft.date=2011-03-01&rft.issn=0031-8655&rft.eissn=1751-1097&rft.volume=87&rft.issue=2&rft.spage=335&rft.epage=341&rft_id=info:doi/10.1111%2Fj.1751-1097.2010.00875.x&rft_id=info%3Apmid%2F21143485&rft.externalDocID=PMC3437770
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8655&client=summon