PrlA suppressor mutations cluster in regions corresponding to three distinct topological domains

The SecY protein of Escherichia coli and its homologues in other organisms, are integral components of the cellular protein translocation machinery. Suppressor mutations that alter SecY (the prlA alleles) broaden the specificity of this machinery and allow secretion of precursor proteins with defect...

Full description

Saved in:
Bibliographic Details
Published inThe EMBO journal Vol. 12; no. 9; pp. 3391 - 3398
Main Authors Osborne, R.S., Silhavy, T.J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group 01.09.1993
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The SecY protein of Escherichia coli and its homologues in other organisms, are integral components of the cellular protein translocation machinery. Suppressor mutations that alter SecY (the prlA alleles) broaden the specificity of this machinery and allow secretion of precursor proteins with defective signal sequences. Twenty‐five prlA alleles have been characterized. These suppressor mutations were found to cluster in regions corresponding to three distinct topological domains of SecY. Based on the nature and position of the prlA mutations, we propose that transmembrane domain 7 of SecY functions in signal sequence recognition. Results suggest that this interaction may involve a right‐handed supercoil of alpha‐helices. Suppressor mutations that alter this domain appear to prevent signal sequence recognition, and this novel mechanism of suppression suggests a proofreading function for SecY. We propose that suppressor mutations that alter a second domain of SecY, transmembrane helix 10, also affect this proof‐reading function, but indirectly. Based on the synthetic phenotypes exhibited by double mutants, we propose that these mutations strengthen the interaction with another component of the translocation machinery, SecE. Suppressor mutations were also found to cluster in a region corresponding to an amino‐terminal periplasmic domain. Possible explanations for this unexpected finding are discussed.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0261-4189
1460-2075
DOI:10.1002/j.1460-2075.1993.tb06013.x