Effects of exercise-induced arterial hypoxaemia and work rate on diaphragmatic fatigue in highly trained endurance athletes
Diaphragmatic fatigue occurs in highly trained athletes during exhaustive exercise. Since approximately half of them also exhibit exercise-induced arterial hypoxaemia (EIAH) during high-intensity exercise, the present study sought to test the hypothesis that arterial hypoxaemia contributes to exerci...
Saved in:
Published in | The Journal of physiology Vol. 572; no. 2; pp. 539 - 549 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
9600 Garsington Road , Oxford , OX4 2DQ , UK
The Physiological Society
15.04.2006
Blackwell Publishing Ltd Blackwell Science Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Diaphragmatic fatigue occurs in highly trained athletes during exhaustive exercise. Since approximately half of them also
exhibit exercise-induced arterial hypoxaemia (EIAH) during high-intensity exercise, the present study sought to test the hypothesis
that arterial hypoxaemia contributes to exercise-induced diaphragmatic fatigue in this population. Ten cyclists ( : 70.0 ± 1.6 ml kg â1 min â1 ; mean ± s.e.m. ) completed, in a balanced ordering sequence, one normoxic (end-exercise arterial O 2 saturation ( S a,O 2 ): 92 ± 1%) and one hyperoxic ( F I,O 2 : 0.5% O 2 ; S a,O 2 : 97 ± 1%) 5 min exercise test at intensities equal to 80 ± 3 and 90 ± 3% of maximal work rate (WR max ), respectively, producing the same tidal volume ( V T ) and breathing frequency ( f ) throughout exercise. Cervical magnetic stimulation was used to determine reduction in twitch transdiaphragmatic pressure
( P di,tw ) during recovery. Hyperoxic exercise at 90% WR max induced significantly ( P = 0.022) greater post-exercise reduction in P di,tw (15 ± 2%) than did normoxic exercise at 80% WR max (9 ± 2%), despite the similar mean ventilation (123 ± 8 and 119 ± 8 l min â1 , respectively), breathing pattern ( V T : 2.53 ± 0.05 and 2.61 ± 0.05 l, f : 49 ± 2 and 46 ± 2 breaths min â1 , respectively), mean changes in P di during exercise (37.1 ± 2.4 and 38.2 ± 2.8 cmH 2 O, respectively) and end-exercise arterial lactate (12.1 ± 1.4 and 10.8 ± 1.1 mmol l â1 , respectively). The difference found in diaphragmatic fatigue between the hyperoxic (at higher leg work rate) and the normoxic
(at lower leg work rate) tests suggests that neither EIAH nor lactic acidosis per se are likely predominant causative factors in diaphragmatic fatigue in this population, at least at the level of S a,O 2 tested. Rather, this result leads us to hypothesize that blood flow competition with the legs is an important contributor
to diaphragmatic fatigue in heavy exercise, assuming that higher leg work required greater leg blood flow. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0022-3751 1469-7793 |
DOI: | 10.1113/jphysiol.2005.102442 |