Recent advances in enantioselective ring-opening polymerization and copolymerization
Precisely controlling macromolecular stereochemistry and sequences is a powerful strategy for manipulating polymer properties. Controlled synthetic routes to prepare degradable polyester, polycarbonate, and polyether are of recent interest due to the need for sustainable materials as alternatives to...
Saved in:
Published in | Communications chemistry Vol. 6; no. 1; p. 202 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.09.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Precisely controlling macromolecular stereochemistry and sequences is a powerful strategy for manipulating polymer properties. Controlled synthetic routes to prepare degradable polyester, polycarbonate, and polyether are of recent interest due to the need for sustainable materials as alternatives to petrochemical-based polyolefins. Enantioselective ring-opening polymerization and ring-opening copolymerization of racemic monomers offer access to stereoregular polymers, specifically enantiopure polymers that form stereocomplexes with improved physicochemical and mechanical properties. Here, we highlight the state-of-the-art of this polymerization chemistry that can produce microstructure-defined polymers. In particular, the structures and performances of various homogeneous enantioselective catalysts are presented. Trends and future challenges of such chemistry are discussed.
Stereoregular polymers exhibit improved thermal and mechanical properties, making the development of enantioselective polymerization catalysts of significant importance. Here, the authors summarize catalyst design strategies and synthetic routes for enantioselective polymerizations of degradable or recyclable polymers from racemic monomers. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 2399-3669 2399-3669 |
DOI: | 10.1038/s42004-023-01007-z |