Neuraminidase-1 (NEU1): Biological Roles and Therapeutic Relevance in Human Disease

Neuraminidases catalyze the desialylation of cell-surface glycoconjugates and play crucial roles in the development and function of tissues and organs. In both physiological and pathophysiological contexts, neuraminidases mediate diverse biological activities via the catalytic hydrolysis of terminal...

Full description

Saved in:
Bibliographic Details
Published inCurrent Issues in Molecular Biology Vol. 46; no. 8; pp. 8031 - 8052
Main Authors Du, Jingxia, Shui, Hanqi, Chen, Rongjun, Dong, Yibo, Xiao, Chengyao, Hu, Yue, Wong, Nai-Kei
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.08.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Neuraminidases catalyze the desialylation of cell-surface glycoconjugates and play crucial roles in the development and function of tissues and organs. In both physiological and pathophysiological contexts, neuraminidases mediate diverse biological activities via the catalytic hydrolysis of terminal neuraminic, or sialic acid residues in glycolipid and glycoprotein substrates. The selective modulation of neuraminidase activity constitutes a promising strategy for treating a broad spectrum of human pathologies, including sialidosis and galactosialidosis, neurodegenerative disorders, cancer, cardiovascular diseases, diabetes, and pulmonary disorders. Structurally distinct as a large family of mammalian proteins, neuraminidases (NEU1 through NEU4) possess dissimilar yet overlapping profiles of tissue expression, cellular/subcellular localization, and substrate specificity. NEU1 is well characterized for its lysosomal catabolic functions, with ubiquitous and abundant expression across such tissues as the kidney, pancreas, skeletal muscle, liver, lungs, placenta, and brain. NEU1 also exhibits a broad substrate range on the cell surface, where it plays hitherto underappreciated roles in modulating the structure and function of cellular receptors, providing a basis for it to be a potential drug target in various human diseases. This review seeks to summarize the recent progress in the research on NEU1-associated diseases and highlight the mechanistic implications of NEU1 in disease pathogenesis. An improved understanding of NEU1-associated diseases should help accelerate translational initiatives to develop novel or better therapeutics.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:1467-3045
1467-3037
1467-3045
DOI:10.3390/cimb46080475