Cardiomyocyte-Specific Deletion of the Vitamin D Receptor Gene Results in Cardiac Hypertrophy
A variety of studies carried out using either human subjects or laboratory animals suggest that vitamin D and its analogues possess important beneficial activity in the cardiovascular system. Using Cre-Lox technology we have selectively deleted the vitamin D receptor (VDR) gene in the cardiac myocyt...
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 124; no. 17; pp. 1838 - 1847 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hagerstown, MD
Lippincott Williams & Wilkins
25.10.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A variety of studies carried out using either human subjects or laboratory animals suggest that vitamin D and its analogues possess important beneficial activity in the cardiovascular system. Using Cre-Lox technology we have selectively deleted the vitamin D receptor (VDR) gene in the cardiac myocyte in an effort to better understand the role of vitamin D in regulating myocyte structure and function.
Targeted deletion of the exon 4 coding sequence in the VDR gene resulted in an increase in myocyte size and left ventricular weight/body weight versus controls both at baseline and following a 7-day infusion of isoproterenol. There was no increase in interstitial fibrosis. These knockout mice demonstrated a reduction in end-diastolic and end-systolic volume by echocardiography, activation of the fetal gene program (ie, increased atrial natriuretic peptide and alpha skeletal actin gene expression), and increased expression of modulatory calcineurin inhibitory protein 1 (MCIP1), a direct downstream target of calcineurin/nuclear factor of activated T cell signaling. Treatment of neonatal cardiomyocytes with 1,25-dihydroxyvitamin D partially reduced isoproterenol-induced MCIP1 mRNA and protein levels and MCIP1 gene promoter activity.
Collectively, these studies demonstrate that the vitamin D-VDR signaling system possesses direct, antihypertrophic activity in the heart. This appears to involve, at least in part, suppression of the prohypertrophic calcineurin/NFAT/MCIP1 pathway. These studies identify a potential mechanism to account for the reported beneficial effects of vitamin D in the cardiovascular system. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0009-7322 1524-4539 1524-4539 |
DOI: | 10.1161/CIRCULATIONAHA.111.032680 |