Association of XIST/miRNA155/Gab2/TAK1 cascade with the pathogenesis of anti-phospholipid syndrome and its effect on cell adhesion molecules and inflammatory mediators

Anti-phospholipid syndrome (APS) is an autoimmune disease characterized by thrombosis and miscarriage events. Still, the molecular mechanisms underlying APS, which predisposes to a wide spectrum of complications, are being explored. Seventy patients with primary and secondary APS were recruited, in...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 18790 - 13
Main Authors Abd-Elmawla, Mai A., Elsabagh, Yumn A., Aborehab, Nora M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Anti-phospholipid syndrome (APS) is an autoimmune disease characterized by thrombosis and miscarriage events. Still, the molecular mechanisms underlying APS, which predisposes to a wide spectrum of complications, are being explored. Seventy patients with primary and secondary APS were recruited, in addition to 35 healthy subjects. Among APS groups, the gene expression levels of XIST, Gab2, and TAK1 were higher along with declined miRNA155 level compared with controls. Moreover, the sera levels of ICAM-1, VCAM-1, IL-1ꞵ, and TNF-α were highly elevated among APS groups either primary or secondary compared with controls. The lncRNA XIST was directly correlated with Gab2, TAK1, VCAM-1, ICAM-1, IL-1ꞵ, and TNF-α. The miRNA155 was inversely correlated with XIST, Gab2, and TAK1. Moreover, ROC curve analyses subscribed the predictive power of the lncRNA XIST and miRNA155, to differentiate between primary and secondary APS from control subjects. The lncRNA XIST and miRNA155 are the upstream regulators of the Gab2/TAK1 axis among APS patients via influencing the levels of VCAM-1, ICAM-1, IL1ꞵ, and TNF-α which propagates further inflammatory and immunological streams. Interestingly, the study addressed that XIST and miRNA155 may be responsible for the thrombotic and miscarriage events associated with APS and provides new noninvasive molecular biomarkers for diagnosing the disease and tracking its progression.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-45214-z