Low-temperature anode-free potassium metal batteries
In contrast to conventional batteries, anode-free configurations can extend cell-level energy densities closer to the theoretical limit. However, realizing alkali metal plating/stripping on a bare current collector with high reversibility is challenging, especially at low temperature, as an unstable...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 6006 - 11 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
26.09.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In contrast to conventional batteries, anode-free configurations can extend cell-level energy densities closer to the theoretical limit. However, realizing alkali metal plating/stripping on a bare current collector with high reversibility is challenging, especially at low temperature, as an unstable solid-electrolyte interphase and uncontrolled dendrite growth occur more easily. Here, a low-temperature anode-free potassium (K) metal non-aqueous battery is reported. By introducing Si-O-based additives, namely polydimethylsiloxane, in a weak-solvation low-concentration electrolyte of 0.4 M potassium hexafluorophosphate in 1,2-dimethoxyethane, the in situ formed potassiophilic interface enables uniform K deposition, and offers K||Cu cells with an average K plating/stripping Coulombic efficiency of 99.80% at −40 °C. Consequently, anode-free Cu||prepotassiated 3,4,9,10-perylene-tetracarboxylicacid-dianhydride full batteries achieve stable cycling with a high specific energy of 152 Wh kg
−1
based on the total mass of the negative and positive electrodes at 0.2 C (26 mA g
−1
) charge/discharge and −40 °C.
Low temperature operation of anode-free batteries is limited by poor reversibility of metal plating/stripping. Here, via electrolyte engineering, authors enable −40 °C operation of an anode-free K metal battery by tailoring a weakly solvating electrolyte with a silicone polymer additive. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-023-41778-6 |