A highly efficient scheme for library preparation from single-stranded DNA
Although methods for sequencing library preparation from double-stranded DNA are well established, those from single-stranded DNA (ssDNA) have not been well studied. Further, the existing methods have limitations in efficiency and yield. Therefore, we developed a highly efficient procedure for seque...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; p. 13913 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.08.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Although methods for sequencing library preparation from double-stranded DNA are well established, those from single-stranded DNA (ssDNA) have not been well studied. Further, the existing methods have limitations in efficiency and yield. Therefore, we developed a highly efficient procedure for sequencing library preparation from ssDNA. In this method, the first adaptor tagging of ssDNA is performed using terminal deoxyribonucleotidyl transferase (TdT)-assisted adenylate connector-mediated ssDNA (TACS) ligation, which we reported recently. After complementary strand synthesis using the adaptor-tagged ssDNA, second adaptor tagging via Vaccinia virus topoisomerase I (VTopoI or TOPO)-based adaptor ligation is performed. With additional steps for degradation, repression, and removal of the adaptor dimer, the proposed TACS-TOPO scheme realizes adaptor dimer-free sequencing library preparation from ssDNA samples of 24 pg. The TACS-TOPO scheme was successfully applied to cell-free DNA analysis with amplification-free library preparation from 50 µL of human serum. A modified TACS-TOPO scheme was also applied to DNA extracted from ancient human bones, bringing two to eight times more library yields than those using a conventional library preparation protocol. The procedures for preparing VTopoI and its complex with a double-stranded oligonucleotide adaptor are also described. Overall, the proposed TACS-TOPO scheme can facilitate practical and sensitive sequencing analysis of ssDNA. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-40890-3 |