O-GlcNAcylation modulates Bmi-1 protein stability and potential oncogenic function in prostate cancer

The Polycomb group transcriptional repressor Bmi-1 often overexpressed and participated in stem cells self-renewal and tumorigenesis initiating of prostate cancer. In this progression, Bmi-1 protein was regulated by transcription and post-translational modifications (PTMs). Nobly, the underlying PTM...

Full description

Saved in:
Bibliographic Details
Published inOncogene Vol. 36; no. 45; pp. 6293 - 6305
Main Authors Li, Y, Wang, L, Liu, J, Zhang, P, An, M, Han, C, Guan, X, Zhang, K
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.11.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Polycomb group transcriptional repressor Bmi-1 often overexpressed and participated in stem cells self-renewal and tumorigenesis initiating of prostate cancer. In this progression, Bmi-1 protein was regulated by transcription and post-translational modifications (PTMs). Nobly, the underlying PTMs regulation of Bmi-1 is poorly known. Here we use co-immunoprecipitation show that in C4-2 cell line, Bmi-1 directly interacted with OGT which is the only known enzyme catalyzed the O-GlcNAcylation in human. Furthermore, we identified that Ser255 is the site for Bmi-1 O-GlcNAcylation, and O-GlcNAcylation promoted Bmi-1 protein stability and its oncogenic activity. Finally, microarray analysis has characterized potential oncogenes associated pathway subject to repression via the OGT-Bmi-1 axis. Taken together, these results indicate that OGT-mediated O-GlcNAcylation at Ser255 stabilizes Bmi-1 and hence inhibits the TP53, PTEN and CDKN1A/CDKN2A pathway. The study not only uncovers a novel functional PTMs of Bmi-1 but also reveals a unique oncogenic role of O-GlcNAcylation in prostate cancer.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0950-9232
1476-5594
1476-5594
DOI:10.1038/onc.2017.223