In Situ Silver Nanonets for Flexible Stretchable Electrodes
Shape-controlled synthesis is an effective method for controlling the physicochemical properties of nanomaterials, especially single-crystal nanomaterials, but it is difficult to control the morphology of single-crystal metallic nanomaterials. Silver nanowires (AgNWs) are regarded as key materials f...
Saved in:
Published in | International journal of molecular sciences Vol. 24; no. 11; p. 9319 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
26.05.2023
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Shape-controlled synthesis is an effective method for controlling the physicochemical properties of nanomaterials, especially single-crystal nanomaterials, but it is difficult to control the morphology of single-crystal metallic nanomaterials. Silver nanowires (AgNWs) are regarded as key materials for the new generation of human-computer interaction, which can be applied in large-scale flexible and foldable devices, large-size touch screens, transparent LED films, photovoltaic cells, etc. When used on a large scale, the junction resistance will be generated at the overlap between AgNWs and the conductivity will decrease. When stretched, the overlap of AgNWs will be easily disconnected, which will lead to a decrease in electrical conductivity or even system failure. We propose that in situ silver nanonets (AgNNs) can solve the above two problems. The AgNNs exhibited excellent electrical conductivity (0.15 Ω∙sq
, which was 0.2 Ω∙sq
lower than the 0.35 Ω∙sq
square resistance of AgNWs) and extensibility (the theoretical tensile rate was 53%). In addition to applications in flexible stretchable sensing and display industries, they also have the potential to be used as plasmonic materials in molecular recognition, catalysis, biomedicine and other fields. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms24119319 |