Recent Advances in Dielectrophoretic Manipulation and Separation of Microparticles and Biological Cells
Dielectrophoresis (DEP) is an advanced microfluidic manipulation technique that is based on the interaction of polarized particles with the spatial gradient of a non-uniform electric field to achieve non-contact and highly selective manipulation of particles. In recent years, DEP has made remarkable...
Saved in:
Published in | Biosensors (Basel) Vol. 14; no. 9; p. 417 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
27.08.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dielectrophoresis (DEP) is an advanced microfluidic manipulation technique that is based on the interaction of polarized particles with the spatial gradient of a non-uniform electric field to achieve non-contact and highly selective manipulation of particles. In recent years, DEP has made remarkable progress in the field of microfluidics, and it has gradually transitioned from laboratory-scale research to high-throughput manipulation in practical applications. This paper reviews the recent advances in dielectric manipulation and separation of microparticles and biological cells and discusses in detail the design of chip structures for the two main methods, direct current dielectrophoresis (DC-DEP) and alternating current dielectrophoresis (AC-DEP). The working principles, technical implementation details, and other improved designs of electrode-based and insulator-based chips are summarized. Functional customization of DEP systems with specific capabilities, including separation, capture, purification, aggregation, and assembly of particles and cells, is then performed. The aim of this paper is to provide new ideas for the design of novel DEP micro/nano platforms with the desired high throughput for further development in practical applications. |
---|---|
AbstractList | Dielectrophoresis (DEP) is an advanced microfluidic manipulation technique that is based on the interaction of polarized particles with the spatial gradient of a non-uniform electric field to achieve non-contact and highly selective manipulation of particles. In recent years, DEP has made remarkable progress in the field of microfluidics, and it has gradually transitioned from laboratory-scale research to high-throughput manipulation in practical applications. This paper reviews the recent advances in dielectric manipulation and separation of microparticles and biological cells and discusses in detail the design of chip structures for the two main methods, direct current dielectrophoresis (DC-DEP) and alternating current dielectrophoresis (AC-DEP). The working principles, technical implementation details, and other improved designs of electrode-based and insulator-based chips are summarized. Functional customization of DEP systems with specific capabilities, including separation, capture, purification, aggregation, and assembly of particles and cells, is then performed. The aim of this paper is to provide new ideas for the design of novel DEP micro/nano platforms with the desired high throughput for further development in practical applications. Dielectrophoresis (DEP) is an advanced microfluidic manipulation technique that is based on the interaction of polarized particles with the spatial gradient of a non-uniform electric field to achieve non-contact and highly selective manipulation of particles. In recent years, DEP has made remarkable progress in the field of microfluidics, and it has gradually transitioned from laboratory-scale research to high-throughput manipulation in practical applications. This paper reviews the recent advances in dielectric manipulation and separation of microparticles and biological cells and discusses in detail the design of chip structures for the two main methods, direct current dielectrophoresis (DC-DEP) and alternating current dielectrophoresis (AC-DEP). The working principles, technical implementation details, and other improved designs of electrode-based and insulator-based chips are summarized. Functional customization of DEP systems with specific capabilities, including separation, capture, purification, aggregation, and assembly of particles and cells, is then performed. The aim of this paper is to provide new ideas for the design of novel DEP micro/nano platforms with the desired high throughput for further development in practical applications.Dielectrophoresis (DEP) is an advanced microfluidic manipulation technique that is based on the interaction of polarized particles with the spatial gradient of a non-uniform electric field to achieve non-contact and highly selective manipulation of particles. In recent years, DEP has made remarkable progress in the field of microfluidics, and it has gradually transitioned from laboratory-scale research to high-throughput manipulation in practical applications. This paper reviews the recent advances in dielectric manipulation and separation of microparticles and biological cells and discusses in detail the design of chip structures for the two main methods, direct current dielectrophoresis (DC-DEP) and alternating current dielectrophoresis (AC-DEP). The working principles, technical implementation details, and other improved designs of electrode-based and insulator-based chips are summarized. Functional customization of DEP systems with specific capabilities, including separation, capture, purification, aggregation, and assembly of particles and cells, is then performed. The aim of this paper is to provide new ideas for the design of novel DEP micro/nano platforms with the desired high throughput for further development in practical applications. |
Audience | Academic |
Author | Zhao, Kai Zhang, Kaihuan Lou, Jia Yao, Junzhu |
AuthorAffiliation | 2 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China 1 Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China |
AuthorAffiliation_xml | – name: 2 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China – name: 1 Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China |
Author_xml | – sequence: 1 givenname: Junzhu surname: Yao fullname: Yao, Junzhu – sequence: 2 givenname: Kai orcidid: 0000-0002-2377-6165 surname: Zhao fullname: Zhao, Kai – sequence: 3 givenname: Jia surname: Lou fullname: Lou, Jia – sequence: 4 givenname: Kaihuan orcidid: 0000-0002-7353-4180 surname: Zhang fullname: Zhang, Kaihuan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39329792$$D View this record in MEDLINE/PubMed |
BookMark | eNptkktv1DAQgCNUREvpjTOKxIUDW_zK2j6hZXlVaoXE42xNnMnWq6y92NlK_HtmH0XbiuQQ2_nm83g8z6uTmCJW1UvOLqW07F0bUuGKWaa4flKdCabtZCq1Ojkan1YXpSwZPVppK_Wz6lRaKay24qxafEePcaxn3R1Ej6UOsf4YcEA_5rS-TRnH4OsbiGG9GWAMKdYQu_oHriHvp6mvb4InGDKhAym2wIeQhrQIHoZ6jsNQXlRPexgKXhy-59Wvz59-zr9Orr99uZrPrie-4WactLYxjIbWdoK1LShjgfGpRphyAORmigI5Ku5ByKlqRYuil13TNdB1XrfyvLrae7sES7fOYQX5j0sQ3G4h5YU75OkkbxD7vpfac0U7tdK3VkpouDTCekuu93vXetOusNvWKcPwQPrwTwy3bpHuHOdKWKMYGd4cDDn93mAZ3SoUT_WAiGlTKAXOFDNCNIS-foQu0yZHqtWOktoYI4m63FMLoBOE2Cfa2NPb4Sp46o0-0PrMcGYbSxWlgFfHZ_iX_H0HECD2AF1hKRl758O4u1kyh8Fx5rad5o47jYLePgq69_4X_wu8k9WA |
CitedBy_id | crossref_primary_10_1016_j_trac_2025_118151 crossref_primary_10_3390_bios14120577 crossref_primary_10_1021_acs_langmuir_4c04505 |
Cites_doi | 10.1021/nl203316r 10.3390/mi11060625 10.1021/acs.analchem.1c00312 10.1146/annurev-anchem-090919-102205 10.1002/smll.201703265 10.1021/jacs.7b03288 10.1039/C2LC20799K 10.3390/mi10060423 10.1039/c2lc21212a 10.1073/pnas.92.3.860 10.1007/s00216-015-8678-2 10.1002/elps.201800198 10.1039/C5LC01353D 10.1007/s00216-020-02590-z 10.1021/acs.analchem.5b00589 10.1021/acs.analchem.9b01104 10.1038/s41378-024-00654-z 10.1016/j.snb.2018.04.020 10.1016/j.seppur.2022.121792 10.1021/acs.analchem.8b05454 10.1088/1361-6528/acb321 10.1002/elps.201200242 10.1088/1361-6463/ac00ed 10.1021/acs.analchem.8b02628 10.1016/j.snb.2021.131109 10.3390/bios14060297 10.1023/B:BMMD.0000013361.03291.6c 10.1039/D0RA10296B 10.1016/0925-4005(90)80209-I 10.1038/s42003-021-02651-8 10.1002/smll.202311726 10.3390/mi11100890 10.1039/C8LC00173A 10.1039/c0lc00656d 10.1063/5.0193920 10.1016/j.bios.2010.09.022 10.1088/0022-3727/47/6/063001 10.3390/mi11100921 10.1021/acs.analchem.3c03740 10.3390/nano7070171 10.1088/1361-6439/aa7eae 10.1017/CBO9780511574498 10.1021/acs.nanolett.8b02654 10.1016/j.jwpe.2024.104793 10.1016/j.colsurfa.2020.125829 10.1016/j.chroma.2018.05.020 10.1002/bies.20804 10.1039/C9AN00456D 10.3390/ijerph20010832 10.1039/D4LC00165F 10.1039/D1AN02196F 10.1063/5.0199737 10.1186/s11671-021-03539-6 10.1038/s41598-019-48198-x 10.3390/mi11050451 10.1016/j.isci.2022.103776 10.1039/C4LC01247J 10.1002/elsc.202100113 10.1021/acs.analchem.7b01458 10.1016/j.carbon.2017.08.037 10.1103/RevModPhys.83.647 10.1039/C7CC01845B 10.1038/s42003-020-0915-3 10.3389/fbioe.2020.00921 10.1002/elps.201800285 10.3390/mi11010047 10.3390/s17030449 10.1039/D3LC01007D 10.1016/j.seppur.2020.117343 10.1039/C4LC01422G 10.3390/bios14040174 10.1063/1.4962875 10.3390/bios8010015 10.1038/s41467-017-01635-9 10.1021/acs.analchem.9b03448 10.1039/C8LC01275J 10.1021/acs.est.2c03900 10.1186/s11671-018-2583-5 10.1039/B513005K 10.1021/acsami.8b14430 10.1016/j.snb.2015.10.053 10.1002/elps.202000137 10.3109/07388559609147425 10.1109/T-ED.1979.19791 10.1364/PRJ.444341 10.1021/acs.analchem.6b03369 10.3390/mi11080734 10.1021/acsami.7b03565 10.1063/1.5124110 10.1039/D0NR08892G 10.1063/1.3077197 10.1016/j.snb.2021.130257 10.1016/j.snb.2019.01.157 10.1016/j.chroma.2023.463894 10.1007/s13206-020-4207-2 10.1016/j.copbio.2013.08.014 10.1021/acs.nanolett.2c02986 10.1021/acs.jpcc.0c04859 10.1002/jctb.7229 10.1021/ac070444e 10.1039/b616112j 10.1016/j.molliq.2020.113211 10.1038/s41598-018-25026-2 10.1063/1.1700065 10.1016/j.bios.2018.08.059 10.1016/j.aca.2019.03.019 10.1039/C9LC00902G 10.1007/s10404-020-2328-5 10.1016/j.snb.2017.04.184 10.3390/mi14010229 10.1039/C6NR06952E 10.1021/nl0703727 10.1021/acs.analchem.3c00782 10.1016/j.jcis.2010.03.039 10.1021/acs.jpcc.0c10592 10.1002/elps.202200234 10.1016/j.jqsrt.2018.04.027 10.1021/acs.analchem.1c00697 10.1039/b918055a 10.1016/j.jenvman.2020.110106 10.1002/smll.202000171 10.1039/C6AN02509A 10.1073/pnas.1509224112 10.1016/j.jcis.2017.10.073 10.1063/1.3294646 10.1021/acs.analchem.6b02104 10.1039/C8LC00113H |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7T5 7X7 7XB 88E 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/bios14090417 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Health & Medical Research Collection Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2079-6374 |
ExternalDocumentID | oai_doaj_org_article_315eefff37c14a48b3cb933a513829c9 PMC11429840 A810959518 39329792 10_3390_bios14090417 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2021YFF1200800 – fundername: Bolian Research Funds of Dalian Maritime University and Fundamental Research Funds for the Central Universities of China grantid: 3132023620 – fundername: National Natural Science Foundation of China grantid: 52301412 – fundername: Natural Science Foundation of Liaoning Province grantid: 2022-BS-100 – fundername: Fundamental Research Funds for the Central Universities of China grantid: 3132023620 – fundername: Bolian Research Funds of Dalian Maritime University |
GroupedDBID | .4S .DC 2XV 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAHBH AAYXX ABUWG ADBBV ADMLS AEUYN AFKRA AFPKN ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE IAO IHR ITC KQ8 LK8 M1P M48 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RPM TUS UKHRP CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB PMFND 3V. 7QL 7T5 7XB 8FK AZQEC C1K DWQXO GNUQQ H94 K9. PKEHL PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c518t-b9580c5199d20bba489a0167ea61aae186e2e1e41ca2364b2be2f3d5d5addc7b3 |
IEDL.DBID | M48 |
ISSN | 2079-6374 |
IngestDate | Wed Aug 27 01:17:12 EDT 2025 Thu Aug 21 18:31:23 EDT 2025 Fri Jul 11 09:57:32 EDT 2025 Fri Jul 25 12:13:37 EDT 2025 Tue Jun 10 21:03:06 EDT 2025 Mon Jul 21 05:58:36 EDT 2025 Thu Apr 24 22:53:24 EDT 2025 Tue Jul 01 02:24:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | microparticle manipulation cell separation dielectrophoresis microfluidics integrated |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c518t-b9580c5199d20bba489a0167ea61aae186e2e1e41ca2364b2be2f3d5d5addc7b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7353-4180 0000-0002-2377-6165 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/bios14090417 |
PMID | 39329792 |
PQID | 3110378883 |
PQPubID | 2032424 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_315eefff37c14a48b3cb933a513829c9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11429840 proquest_miscellaneous_3110408225 proquest_journals_3110378883 gale_infotracacademiconefile_A810959518 pubmed_primary_39329792 crossref_citationtrail_10_3390_bios14090417 crossref_primary_10_3390_bios14090417 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240827 |
PublicationDateYYYYMMDD | 2024-08-27 |
PublicationDate_xml | – month: 8 year: 2024 text: 20240827 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biosensors (Basel) |
PublicationTitleAlternate | Biosensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_93 ref_14 ref_12 Zhou (ref_83) 2024; 36 ref_99 Faraghat (ref_115) 2023; 44 Chen (ref_114) 2024; 58 Burg (ref_125) 2010; 107 Zhou (ref_121) 2017; 9 Oh (ref_15) 2012; 12 Burg (ref_126) 2009; 94 Zhao (ref_55) 2017; 250 Wang (ref_81) 2023; 98 Oshiro (ref_62) 2022; 25 Kiryo (ref_112) 2022; 22 Zhang (ref_71) 2021; 255 Abdallah (ref_59) 2015; 87 Park (ref_13) 2007; 7 Paguirigan (ref_3) 2008; 30 Song (ref_52) 2021; 11 Wu (ref_95) 2021; 93 Araci (ref_6) 2014; 25 Frusawa (ref_64) 2018; 13 ref_22 Pamme (ref_32) 2006; 6 Pendharkar (ref_78) 2022; 354 Kim (ref_29) 2019; 91 Cao (ref_118) 2018; 14 Liu (ref_90) 2019; 40 Zhao (ref_87) 2018; 512 ref_26 Manz (ref_2) 1990; 1 Khoshmanesh (ref_18) 2011; 26 Ernst (ref_24) 2023; 95 Ober (ref_5) 2015; 112 (ref_50) 2019; 91 Bian (ref_113) 2024; 36 Liu (ref_46) 2019; 144 Petersson (ref_17) 2007; 79 Zhao (ref_88) 2018; 1558 ref_73 Zhao (ref_60) 2016; 8 Friend (ref_23) 2011; 83 Ming (ref_27) 2014; 47 Ertsgaard (ref_103) 2018; 18 Mohammadi (ref_58) 2015; 407 Inaba (ref_128) 2021; 344 Liu (ref_79) 2022; 56 Yandrapalli (ref_8) 2019; 19 Pohl (ref_35) 1951; 22 Hawari (ref_63) 2020; 260 Hejazian (ref_30) 2015; 15 ref_85 Robert (ref_19) 2011; 11 (ref_36) 2012; 33 Zhang (ref_25) 2020; 24 Lv (ref_72) 2023; 1693 Kwak (ref_105) 2021; 125 Li (ref_43) 2021; 13 Sire (ref_124) 2012; 12 (ref_28) 2019; 40 Luo (ref_96) 2018; 18 Sun (ref_75) 2016; 88 Li (ref_86) 2022; 147 Barik (ref_61) 2021; 611 ref_56 Zheng (ref_122) 2017; 124 ref_54 Nasiri (ref_10) 2020; 16 ref_53 Liang (ref_37) 2010; 347 ref_51 Ren (ref_57) 2021; 54 Julius (ref_84) 2024; 10 Frisenda (ref_127) 2017; 53 Zhao (ref_89) 2017; 27 Terry (ref_1) 1979; 26 Gong (ref_33) 2018; 214 Chu (ref_39) 2015; 15 Barik (ref_102) 2017; 8 (ref_76) 2018; 18 Zhang (ref_21) 2020; 13 Braff (ref_40) 2012; 12 Jones (ref_74) 2017; 89 ref_68 ref_67 Wu (ref_98) 2018; 90 Becker (ref_92) 1995; 92 Soong (ref_100) 2024; 24 Pethig (ref_38) 1996; 16 Veserat (ref_4) 2016; 16 Shi (ref_47) 2019; 19 Li (ref_77) 2017; 139 Chen (ref_82) 2024; 24 Zhao (ref_94) 2018; 10 ref_117 Derakhshan (ref_69) 2020; 310 ref_116 Sun (ref_49) 2021; 16 Modarres (ref_66) 2019; 286 ref_111 ref_31 Malekanfard (ref_65) 2021; 93 Han (ref_70) 2022; 22 Seo (ref_129) 2024; 20 Zhang (ref_97) 2018; 267 Crowther (ref_48) 2019; 1068 Magnusson (ref_9) 2017; 89 Pesch (ref_44) 2021; 42 Yang (ref_16) 2016; 224 ref_104 Rashed (ref_11) 2020; 412 Weirauch (ref_108) 2022; 300 Islam (ref_107) 2024; 96 Nguyen (ref_119) 2018; 121 Vijayaraghavan (ref_123) 2007; 7 ref_109 ref_45 ref_42 ref_41 Famularo (ref_120) 2020; 124 ref_101 Weber (ref_106) 2023; 34 Zhao (ref_80) 2019; 91 Xie (ref_34) 2022; 10 Crowther (ref_91) 2017; 142 Zhang (ref_110) 2020; 14 Kobel (ref_7) 2010; 10 Zhang (ref_20) 2004; 6 |
References_xml | – volume: 12 start-page: 1184 year: 2012 ident: ref_124 article-title: Flexible Gigahertz Transistors Derived from Solution-Based Single-Layer Graphene publication-title: Nano Lett. doi: 10.1021/nl203316r – ident: ref_117 doi: 10.3390/mi11060625 – volume: 93 start-page: 7635 year: 2021 ident: ref_95 article-title: Label-Free Multitarget Separation of Particles and Cells under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c00312 – volume: 13 start-page: 17 year: 2020 ident: ref_21 article-title: Acoustic Microfluidics publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-090919-102205 – volume: 14 start-page: e1703265 year: 2018 ident: ref_118 article-title: Dielectrophoresis-Based Protein Enrichment for a Highly Sensitive Immunoassay Using Ag/SiO2 Nanorod Arrays publication-title: Small doi: 10.1002/smll.201703265 – volume: 139 start-page: 8950 year: 2017 ident: ref_77 article-title: High-Throughput Selective Capture of Single Circulating Tumor Cells by Dielectrophoresis at a Wireless Electrode Array publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03288 – volume: 12 start-page: 515 year: 2012 ident: ref_15 article-title: Design of Pressure-Driven Microfluidic Networks Using Electric Circuit Analogy publication-title: Lab Chip doi: 10.1039/C2LC20799K – ident: ref_26 doi: 10.3390/mi10060423 – volume: 12 start-page: 1327 year: 2012 ident: ref_40 article-title: High Sensitivity Three-Dimensional Insulator-Based Dielectrophoresis publication-title: Lab Chip doi: 10.1039/c2lc21212a – volume: 92 start-page: 860 year: 1995 ident: ref_92 article-title: Separation of Human Breast Cancer Cells from Blood by Differential Dielectric Affinity publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.92.3.860 – volume: 407 start-page: 4733 year: 2015 ident: ref_58 article-title: Hydrodynamic and Direct-Current Insulator-Based Dielectrophoresis (H-DC-IDEP) Microfluidic Blood Plasma Separation publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-015-8678-2 – volume: 40 start-page: 955 year: 2019 ident: ref_90 article-title: Revisit of Wall-Induced Lateral Migration in Particle Electrophoresis through a Straight Rectangular Microchannel: Effects of Particle Zeta Potential publication-title: Electrophoresis doi: 10.1002/elps.201800198 – volume: 16 start-page: 334 year: 2016 ident: ref_4 article-title: Surface-Tension Driven Open Microfluidic Platform for Hanging Droplet Culture publication-title: Lab Chip doi: 10.1039/C5LC01353D – volume: 412 start-page: 3813 year: 2020 ident: ref_11 article-title: Advances and Applications of Isomotive Dielectrophoresis for Cell Analysis publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-020-02590-z – volume: 87 start-page: 4159 year: 2015 ident: ref_59 article-title: High Throughput Protein Nanocrystal Fractionation in a Microfluidic Sorter publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b00589 – volume: 91 start-page: 6304 year: 2019 ident: ref_80 article-title: Continuous Cell Characterization and Separation by Microfluidic Alternating Current Dielectrophoresis publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b01104 – volume: 10 start-page: 29 year: 2024 ident: ref_84 article-title: Portable Dielectrophoresis for Biology: ADEPT Facilitates Cell Trapping, Separation, and Interactions publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-024-00654-z – volume: 267 start-page: 14 year: 2018 ident: ref_97 article-title: Tunable Particle Separation in a Hybrid Dielectrophoresis (DEP)-Inertial Microfluidic Device publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2018.04.020 – volume: 300 start-page: 121792 year: 2022 ident: ref_108 article-title: Shape-Selective Remobilization of Microparticles in a Mesh-Based DEP Filter at High Throughput publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2022.121792 – volume: 91 start-page: 277 year: 2019 ident: ref_29 article-title: Dielectrophoresis: From Molecular to Micrometer-Scale Analytes publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b05454 – volume: 34 start-page: 175502 year: 2023 ident: ref_106 article-title: Chip for Dielectrophoretic Microbial Capture, Separation and Detection II: Experimental Study publication-title: Nanotechnology doi: 10.1088/1361-6528/acb321 – volume: 33 start-page: 3110 year: 2012 ident: ref_36 article-title: Microfabrication Technologies in Dielectrophoresis Applications—A Review publication-title: Electrophoresis doi: 10.1002/elps.201200242 – volume: 54 start-page: 345302 year: 2021 ident: ref_57 article-title: Nanopore-Based Active Oil Droplet Filtration under Negative DC Dielectrophoresis for Oily Wastewater Treatment publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/ac00ed – volume: 90 start-page: 11461 year: 2018 ident: ref_98 article-title: High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b02628 – volume: 354 start-page: 131109 year: 2022 ident: ref_78 article-title: A High Throughput Biocompatible Insulator Based Dielectrophoretic (IDEP) Lab Chip for Patterning and Fusion of Biological Cells publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.131109 – ident: ref_101 doi: 10.3390/bios14060297 – volume: 6 start-page: 11 year: 2004 ident: ref_20 article-title: Time-of-Flight Optophoresis Analysis of Live Whole Cells in Microfluidic Channels publication-title: Biomed. Microdevices doi: 10.1023/B:BMMD.0000013361.03291.6c – volume: 11 start-page: 3827 year: 2021 ident: ref_52 article-title: Simultaneous and Continuous Particle Separation and Counting: Via Localized DC-Dielectrophoresis in a Microfluidic Chip publication-title: RSC Adv. doi: 10.1039/D0RA10296B – volume: 1 start-page: 244 year: 1990 ident: ref_2 article-title: Miniaturized Total Chemical Analysis Systems: A Novel Concept for Chemical Sensing publication-title: Sens. Actuators B Chem. doi: 10.1016/0925-4005(90)80209-I – ident: ref_45 – ident: ref_116 doi: 10.1038/s42003-021-02651-8 – volume: 20 start-page: 2311726 year: 2024 ident: ref_129 article-title: On-Chip Micro-Supercapacitor with High Areal Energy Density Based on Dielectrophoretic Assembly of Nanoporous Metal Microwire Electrodes publication-title: Small doi: 10.1002/smll.202311726 – ident: ref_56 doi: 10.3390/mi11100890 – volume: 18 start-page: 1521 year: 2018 ident: ref_96 article-title: A Simplified Sheathless Cell Separation Approach Using Combined Gravitational-Sedimentation-Based Prefocusing and Dielectrophoretic Separation publication-title: Lab Chip doi: 10.1039/C8LC00173A – volume: 11 start-page: 1902 year: 2011 ident: ref_19 article-title: Cell Sorting by Endocytotic Capacity in a Microfluidic Magnetophoresis Device publication-title: Lab Chip doi: 10.1039/c0lc00656d – volume: 36 start-page: 032018 year: 2024 ident: ref_83 article-title: Dielectrophoretic-Inertial Microfluidics for Symbiodinium Separation and Enrichment publication-title: Phys. Fluids doi: 10.1063/5.0193920 – volume: 26 start-page: 1800 year: 2011 ident: ref_18 article-title: Dielectrophoretic Platforms for Bio-Microfluidic Systems publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.09.022 – volume: 47 start-page: 063001 year: 2014 ident: ref_27 article-title: A Review of Microfabrication Techniques and Dielectrophoretic Microdevices for Particle Manipulation and Separation publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/47/6/063001 – ident: ref_22 doi: 10.3390/mi11100921 – volume: 96 start-page: 1084 year: 2024 ident: ref_107 article-title: High-Throughput Continuous Free-Flow Dielectrophoretic Trapping of Micron-Scale Particles and Cells in Paper Using Localized Nonuniform Pore-Scale-Generated Paper-Based Electric Field Gradients publication-title: Anal. Chem. doi: 10.1021/acs.analchem.3c03740 – ident: ref_31 doi: 10.3390/nano7070171 – volume: 27 start-page: 095007 year: 2017 ident: ref_89 article-title: Numerical Studies of Manipulation and Separation of Janus Particles in Nano-Orifice Based DC-Dielectrophoretic Microfluidic Chips publication-title: J. Micromechanics Microengineering doi: 10.1088/1361-6439/aa7eae – ident: ref_42 doi: 10.1017/CBO9780511574498 – volume: 18 start-page: 5946 year: 2018 ident: ref_103 article-title: Integrated Nanogap Platform for Sub-Volt Dielectrophoretic Trapping and Real-Time Raman Imaging of Biological Nanoparticles publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02654 – volume: 58 start-page: 104793 year: 2024 ident: ref_114 article-title: Acceleration of Adsorption of Heavy Metal Ion Micelles onto Iron/Polyvinyltetrazole Adsorbents with Dielectrophoresis Force under Polarization publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2024.104793 – volume: 611 start-page: 125829 year: 2021 ident: ref_61 article-title: Nanogap Dielectrophoresis Combined with Buffer Exchange for Detecting Protein Binding to Trapped Bioparticles publication-title: Colloids Surfaces A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2020.125829 – volume: 1558 start-page: 96 year: 2018 ident: ref_88 article-title: Direct Current Dielectrophoretic Manipulation of the Ionic Liquid Droplets in Water publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2018.05.020 – volume: 30 start-page: 811 year: 2008 ident: ref_3 article-title: Microfluidics Meet Cell Biology: Bridging the Gap by Validation and Application of Microscale Techniques for Cell Biological Assays publication-title: BioEssays doi: 10.1002/bies.20804 – volume: 144 start-page: 4066 year: 2019 ident: ref_46 article-title: Identification of Neural Stem and Progenitor Cell Subpopulations Using DC Insulator-Based Dielectrophoresis publication-title: Analyst doi: 10.1039/C9AN00456D – ident: ref_73 doi: 10.3390/ijerph20010832 – volume: 24 start-page: 2506 year: 2024 ident: ref_82 article-title: Dielectrophoretic Characterization and Selection of Non-Spherical Flagellate Algae in Parallel Channels with Right-Angle Bipolar Electrodes publication-title: Lab Chip doi: 10.1039/D4LC00165F – volume: 147 start-page: 1106 year: 2022 ident: ref_86 article-title: Conductivity-Difference-Enhanced DC Dielectrophoretic Particle Separation in a Microfluidic Chip publication-title: Analyst doi: 10.1039/D1AN02196F – volume: 36 start-page: 042006 year: 2024 ident: ref_113 article-title: Optically Induced Dielectrophoresis for Continuous Separation and Purification of C. vulgaris and H. pluvialis publication-title: Phys. Fluids doi: 10.1063/5.0199737 – volume: 16 start-page: 86 year: 2021 ident: ref_49 article-title: Fabrication of Rectification Nanosensors by Direct Current Dielectrophoresis Alignment of ZnO Nanowires publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-021-03539-6 – ident: ref_67 doi: 10.1038/s41598-019-48198-x – ident: ref_53 doi: 10.3390/mi11050451 – volume: 25 start-page: 103776 year: 2022 ident: ref_62 article-title: Fabrication of a New All-in-One Microfluidic Dielectrophoresis Integrated Chip and Living Cell Separation publication-title: iScience doi: 10.1016/j.isci.2022.103776 – volume: 15 start-page: 920 year: 2015 ident: ref_39 article-title: Three-Dimensional Cell Manipulation and Patterning Using Dielectrophoresis via a Multi-Layer Scaffold Structure publication-title: Lab Chip doi: 10.1039/C4LC01247J – volume: 22 start-page: 417 year: 2022 ident: ref_112 article-title: Purification of Pluripotent Embryonic Stem Cells Using Dielectrophoresis and a Flow Control System publication-title: Eng. Life Sci. doi: 10.1002/elsc.202100113 – volume: 89 start-page: 11954 year: 2017 ident: ref_9 article-title: Clinical-Scale Cell-Surface-Marker Independent Acoustic Microfluidic Enrichment of Tumor Cells from Blood publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b01458 – volume: 124 start-page: 693 year: 2017 ident: ref_122 article-title: Large-Scale Directed Assembly of Single-Walled Carbon Nanotube Devices by Alternating Current Coupling Dielectrophoresis publication-title: Carbon doi: 10.1016/j.carbon.2017.08.037 – volume: 83 start-page: 647 year: 2011 ident: ref_23 article-title: Microscale Acoustofluidics: Microfluidics Driven via Acoustics and Ultrasonics publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.83.647 – volume: 53 start-page: 6164 year: 2017 ident: ref_127 article-title: Dielectrophoretic Assembly of Liquid-Phase-Exfoliated TiS3 Nanoribbons for Photodetecting Applications publication-title: Chem. Commun. doi: 10.1039/C7CC01845B – ident: ref_14 doi: 10.1038/s42003-020-0915-3 – ident: ref_109 doi: 10.3389/fbioe.2020.00921 – volume: 40 start-page: 358 year: 2019 ident: ref_28 article-title: On the Recent Developments of Insulator-Based Dielectrophoresis: A Review publication-title: Electrophoresis doi: 10.1002/elps.201800285 – ident: ref_111 doi: 10.3390/mi11010047 – ident: ref_12 doi: 10.3390/s17030449 – volume: 24 start-page: 1965 year: 2024 ident: ref_100 article-title: Bin Nanoscale Sorting of Extracellular Vesicles via Optically-Induced Dielectrophoresis on an Integrated Microfluidic System publication-title: Lab Chip doi: 10.1039/D3LC01007D – volume: 255 start-page: 117343 year: 2021 ident: ref_71 article-title: Numerical Simulation of Circulating Tumor Cell Separation in a Dielectrophoresis Based Y-Y Shaped Microfluidic Device publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117343 – volume: 15 start-page: 959 year: 2015 ident: ref_30 article-title: Lab on a Chip for Continuous-Flow Magnetic Cell Separation publication-title: Lab Chip doi: 10.1039/C4LC01422G – ident: ref_99 doi: 10.3390/bios14040174 – ident: ref_54 doi: 10.1063/1.4962875 – ident: ref_93 doi: 10.3390/bios8010015 – volume: 8 start-page: 1867 year: 2017 ident: ref_102 article-title: Graphene-Edge Dielectrophoretic Tweezers for Trapping of Biomolecules publication-title: Nat. Commun. doi: 10.1038/s41467-017-01635-9 – volume: 91 start-page: 14975 year: 2019 ident: ref_50 article-title: Electrokinetically Driven Exosome Separation and Concentration Using Dielectrophoretic-Enhanced PDMS-Based Microfluidics publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b03448 – volume: 19 start-page: 626 year: 2019 ident: ref_8 article-title: Ultra-High Capacity Microfluidic Trapping of Giant Vesicles for High-Throughput Membrane Studies publication-title: Lab Chip doi: 10.1039/C8LC01275J – volume: 56 start-page: 10997 year: 2022 ident: ref_79 article-title: Dielectrophoresis-Based Universal Membrane Antifouling Strategy toward Colloidal Foulants publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c03900 – volume: 13 start-page: 169 year: 2018 ident: ref_64 article-title: Frequency-Modulated Wave Dielectrophoresis of Vesicles And Cells: Periodic U-Turns at the Crossover Frequency publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-018-2583-5 – volume: 6 start-page: 24 year: 2006 ident: ref_32 article-title: Magnetism and Microfluidics publication-title: Lab Chip doi: 10.1039/B513005K – volume: 10 start-page: 36572 year: 2018 ident: ref_94 article-title: Tunable Droplet Manipulation and Characterization by Ac-DEP publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14430 – volume: 224 start-page: 1 year: 2016 ident: ref_16 article-title: Micro-Magnetofluidics in Microfluidic Systems: A Review publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2015.10.053 – volume: 42 start-page: 134 year: 2021 ident: ref_44 article-title: A Review of Dielectrophoretic Separation and Classification of Non-Biological Particles publication-title: Electrophoresis doi: 10.1002/elps.202000137 – volume: 16 start-page: 331 year: 1996 ident: ref_38 article-title: Dielectrophoresis: Using Inhomogeneous AC Electrical Fields to Separate and Manipulate Cells publication-title: Crit. Rev. Biotechnol. doi: 10.3109/07388559609147425 – volume: 26 start-page: 1880 year: 1979 ident: ref_1 article-title: Gas Chromatographic Air Analyzer Fabricated on a Silicon Wafer publication-title: IEEE Trans. Electron. Devices doi: 10.1109/T-ED.1979.19791 – volume: 10 start-page: 166 year: 2022 ident: ref_34 article-title: Single-Particle Trapping and Dynamic Manipulation with Holographic Optical Surface-Wave Tweezers publication-title: Photonics Res. doi: 10.1364/PRJ.444341 – volume: 89 start-page: 1531 year: 2017 ident: ref_74 article-title: Continuous Separation of DNA Molecules by Size Using Insulator-Based Dielectrophoresis publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b03369 – ident: ref_68 doi: 10.3390/mi11080734 – volume: 9 start-page: 16715 year: 2017 ident: ref_121 article-title: Spatial Manipulation and Assembly of Nanoparticles by Atomic Force Microscopy Tip-Induced Dielectrophoresis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03565 – ident: ref_85 doi: 10.1063/1.5124110 – volume: 13 start-page: 4330 year: 2021 ident: ref_43 article-title: On the Design, Functions, and Biomedical Applications of High-Throughput Dielectrophoretic Micro-/Nanoplatforms: A Review publication-title: Nanoscale doi: 10.1039/D0NR08892G – volume: 94 start-page: 053110 year: 2009 ident: ref_126 article-title: High-Yield Dielectrophoretic Assembly of Two-Dimensional Graphene Nanostructures publication-title: Appl. Phys. Lett. doi: 10.1063/1.3077197 – volume: 344 start-page: 130257 year: 2021 ident: ref_128 article-title: Effect of Mixing Ratio on NO2 Gas Sensor Response with SnO2-Decorated Carbon Nanotube Channels Fabricated by One-Step Dielectrophoretic Assembly publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2021.130257 – volume: 286 start-page: 493 year: 2019 ident: ref_66 article-title: Frequency Hopping Dielectrophoresis as a New Approach for Microscale Particle and Cell Enrichment publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2019.01.157 – volume: 1693 start-page: 463894 year: 2023 ident: ref_72 article-title: Simulation and Analysis of Geometric Parameters Based on Taguchi Method in Y-Y Microfluidic Device for Circulating Tumor Cell Separation by Alternating Current Dielectrophoresis publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2023.463894 – ident: ref_41 – volume: 14 start-page: 185 year: 2020 ident: ref_110 article-title: Separation of Macrophages Using a Dielectrophoresis-Based Microfluidic Device publication-title: Biochip J. doi: 10.1007/s13206-020-4207-2 – volume: 25 start-page: 60 year: 2014 ident: ref_6 article-title: Recent Developments in Microfluidic Large Scale Integration publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2013.08.014 – volume: 22 start-page: 8258 year: 2022 ident: ref_70 article-title: Scalable Self-Limiting Dielectrophoretic Trapping for Site-Selective Assembly of Nanoparticles publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c02986 – volume: 124 start-page: 18755 year: 2020 ident: ref_120 article-title: Segmentation-Dependent Dielectrophoretic Assembly of Multisegment Metal/Dielectric Particles publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c04859 – volume: 98 start-page: 140 year: 2023 ident: ref_81 article-title: Separation of Microalgae Cells in a Microfluidic Chip Based on AC Dielectrophoresis publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.7229 – volume: 79 start-page: 5117 year: 2007 ident: ref_17 article-title: Free Flow Acoustophoresis Microfluidic-Based Mode of Particle and Cell Separation publication-title: Anal. Chem. doi: 10.1021/ac070444e – volume: 7 start-page: 557 year: 2007 ident: ref_13 article-title: Multifunctional Microvalves Control by Optical Illumination on Nanoheaters and Its Application in Centrifugal Microfluidic Devices publication-title: Lab Chip doi: 10.1039/b616112j – volume: 310 start-page: 113211 year: 2020 ident: ref_69 article-title: Numerical Investigation into Continuous Separation of Particles and Cells in a Two-Component Fluid Flow Using Dielectrophoresis publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2020.113211 – ident: ref_104 doi: 10.1038/s41598-018-25026-2 – volume: 22 start-page: 869 year: 1951 ident: ref_35 article-title: The Motion and Precipitation of Suspensoids in Divergent Electric Fields publication-title: J. Appl. Phys. doi: 10.1063/1.1700065 – volume: 121 start-page: 10 year: 2018 ident: ref_119 article-title: Impedance Detection Integrated with Dielectrophoresis Enrichment Platform for Lung Circulating Tumor Cells in a Microfluidic Channel publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.08.059 – volume: 1068 start-page: 41 year: 2019 ident: ref_48 article-title: Isolation and Identification of Listeria Monocytogenes Utilizing DC Insulator-Based Dielectrophoresis publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2019.03.019 – volume: 19 start-page: 3726 year: 2019 ident: ref_47 article-title: Rapid and Label-Free Isolation of Small Extracellular Vesicles from Biofluids Utilizing a Novel Insulator Based Dielectrophoretic Device publication-title: Lab Chip doi: 10.1039/C9LC00902G – volume: 24 start-page: 24 year: 2020 ident: ref_25 article-title: A Concise Review of Microfluidic Particle Manipulation Methods publication-title: Microfluid. Nanofluidics doi: 10.1007/s10404-020-2328-5 – volume: 250 start-page: 274 year: 2017 ident: ref_55 article-title: Continuous Separation of Nanoparticles by Type via Localized DC-Dielectrophoresis Using Asymmetric Nano-Orifice in Pressure-Driven Flow publication-title: Sens. Actuators B Chem. doi: 10.1016/j.snb.2017.04.184 – ident: ref_51 doi: 10.3390/mi14010229 – volume: 8 start-page: 18945 year: 2016 ident: ref_60 article-title: Separation of Nanoparticles by a Nano-Orifice Based DC-Dielectrophoresis Method in a Pressure-Driven Flow publication-title: Nanoscale doi: 10.1039/C6NR06952E – volume: 7 start-page: 1556 year: 2007 ident: ref_123 article-title: Ultra-Large-Scale Directed Assembly of Single-Walled Carbon Nanotube Devices publication-title: Nano Lett. doi: 10.1021/nl0703727 – volume: 95 start-page: 6740 year: 2023 ident: ref_24 article-title: Characterization of the Nonlinear Electrophoretic Behavior of Colloidal Particles in a Microfluidic Channel publication-title: Anal. Chem. doi: 10.1021/acs.analchem.3c00782 – volume: 347 start-page: 142 year: 2010 ident: ref_37 article-title: Wall-Induced Lateral Migration in Particle Electrophoresis through a Rectangular Microchannel publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.03.039 – volume: 125 start-page: 6278 year: 2021 ident: ref_105 article-title: Size-Selective Particle Trapping in Dielectrophoretic Corral Traps publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c10592 – volume: 44 start-page: 947 year: 2023 ident: ref_115 article-title: Low-Cost, High-Throughput and Rapid-Prototyped 3D-Integrated Dielectrophoretic Channels for Continuous Cell Enrichment and Separation publication-title: Electrophoresis doi: 10.1002/elps.202200234 – volume: 214 start-page: 94 year: 2018 ident: ref_33 article-title: Optical Trapping and Manipulation of Single Particles in Air: Principles, Technical Details, and Applications publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2018.04.027 – volume: 93 start-page: 5947 year: 2021 ident: ref_65 article-title: AC Insulator-Based Dielectrophoretic Focusing of Particles and Cells in an “Infinite” Microchannel publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c00697 – volume: 10 start-page: 857 year: 2010 ident: ref_7 article-title: Optimization of Microfluidic Single Cell Trapping for Long-Term On-Chip Culture publication-title: Lab Chip doi: 10.1039/b918055a – volume: 260 start-page: 110106 year: 2020 ident: ref_63 article-title: Effect of the Induced Dielectrophoretic Force on Harvesting of Marine Microalgae (Tetraselmis sp.) in Electrocoagulation publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.110106 – volume: 16 start-page: e2000171 year: 2020 ident: ref_10 article-title: Microfluidic-Based Approaches in Targeted Cell/Particle Separation Based on Physical Properties: Fundamentals and Applications publication-title: Small doi: 10.1002/smll.202000171 – volume: 142 start-page: 1608 year: 2017 ident: ref_91 article-title: Refinement of Insulator-Based Dielectrophoresis publication-title: Analyst doi: 10.1039/C6AN02509A – volume: 112 start-page: 12293 year: 2015 ident: ref_5 article-title: Active Mixing of Complex Fluids at the Microscale publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1509224112 – volume: 512 start-page: 389 year: 2018 ident: ref_87 article-title: Manipulation and Separation of Oil Droplets by Using Asymmetric Nano-Orifice Induced DC Dielectrophoretic Method publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2017.10.073 – volume: 107 start-page: 034302 year: 2010 ident: ref_125 article-title: Dielectrophoretic Integration of Single- and Few-Layer Graphenes publication-title: J. Appl. Phys. doi: 10.1063/1.3294646 – volume: 88 start-page: 8264 year: 2016 ident: ref_75 article-title: Continuous On-Chip Cell Separation Based on Conductivity-Induced Dielectrophoresis with 3D Self-Assembled Ionic Liquid Electrodes publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b02104 – volume: 18 start-page: 1793 year: 2018 ident: ref_76 article-title: Phase-Shift Feedback Control for Dielectrophoretic Micromanipulation publication-title: Lab Chip doi: 10.1039/C8LC00113H |
SSID | ssj0000747937 |
Score | 2.3584857 |
SecondaryResourceType | review_article |
Snippet | Dielectrophoresis (DEP) is an advanced microfluidic manipulation technique that is based on the interaction of polarized particles with the spatial gradient of... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 417 |
SubjectTerms | Alternating current cell separation Cell Separation - methods Cells Cytoplasm Dielectric properties Dielectrophoresis Direct current Electric contacts Electric fields Electrophoresis Fluids Humans integrated Magnetic fields Microfluidic Analytical Techniques Microfluidics microparticle manipulation Microparticles Radiation Review Separation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9swED5Gn7qHsa1b57UrKmz0YZhakmVLj2m3EAbZy1rom5FkeTUEJyzp_--d5WQOpexlb459MfLdSXcn3X0H8JmOBVE3irRwXmKAkpvUqMynuuHeNoJsIu1Dzn8Ws9v8x526G7X6opywCA8cGXcpuQqhaRpZep7bXDvpHQbhVhF4nvF96R7avFEw1a_BJe0YlTHTXWJcf-na5ZrAnbK870321wb1UP1PF-SRRdrPlhyZn-lreDX4jWwSx_sGXoTuLbwcoQkewW90AfHPbBKP9des7di3duhzs7qP9Ypsbrt227OL2a5mv0KE_8afy4bNKUFvtU2X6wliu0oSJrsOi8X6HdxOv99cz9Khj0LqFdeb1BmlM7w0phaZc8hEY6n6INiCWxu4LoIIPOQoHYKTd8IF0cha1QoXP186-R4OumUXPgDLy8bJrHZKa5vXvrZGYoQobC00vk3yBL5uOVv5AWScel0sKgw2SA7VWA4JfNlRryK4xjN0VySkHQ1BYvc3UFGqgSPVvxQlgQsScUUTF4fk7VB_gB9GEFjVRHPaE0WOJXC61YJqmNFrfD1VVGqtZQLnu8c4F-mAxXZh-RBpqIG3UAkcR6XZjVmio2xKIxLQe-q091H7T7r2vsf7pnJng2z--D_YcAKHAv0y2hYX5SkcbP48hE_oV23cWT-FHgGUzCJS priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BeIEHxDeBgYwE4gFFq-04sZ9QGUwTUnmBSX2LbMfZIlVJWbr_n7vEyVoheGuaa2X7zr4P3_0O4D1dC6Js5GnuvEQHJTOpUQuf6pp7WwvSiRSHXP3Izy-y72u1jgG3PqZVTmficFBXnacY-YnkVNGG_pr8vP2dUtcoul2NLTTuwj2CLiOpLtbFHGMhcHhUv2O-u0Tv_sQ1XU8QT4ts6FB2q4kGwP6_j-U9vXSYM7mnhM4ewcNoPbLlyO7HcCe0T-DBHqbgU7hEQxB_zJbj5X7PmpZ9bWK3m-3VWLXIVrZtps5dzLYV-xlGEHB87Gq2ojS97ZQ0NxCMTSuJpew0bDb9M7g4-_br9DyN3RRSr7jepc4ovcCPxlRi4ZzNtLFUgxBszq0NXOdBBB4y5BGByjvhgqhlpSqFR6AvnHwOR23XhpfAsqJ2clE5pbXNKl9ZI9FPFLYSGv9N8gQ-TStb-gg1Th0vNiW6HMSHcp8PCXyYqbcjxMY_6L4Qk2YaAsYevuiuL8u4IqXkKoS6rmXheYZzdNI7I6VVhLVovEngI7G4pO2LQ_I2ViHgxAgIq1xqTpFRXLEEjicpKOO-7stbKUzg3fwadyRds9g2dDcjDbXxFiqBF6PQzGOWaC6bwogE9IE4HUzq8E3bXA2o31T0bHCZX_1_XK_hvkC7i8LeojiGo931TXiDdtPOvR02xx-1MRm2 priority: 102 providerName: ProQuest |
Title | Recent Advances in Dielectrophoretic Manipulation and Separation of Microparticles and Biological Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39329792 https://www.proquest.com/docview/3110378883 https://www.proquest.com/docview/3110408225 https://pubmed.ncbi.nlm.nih.gov/PMC11429840 https://doaj.org/article/315eefff37c14a48b3cb933a513829c9 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_t4wUeEN-EjSpIIB5QILaT2H5AqBubJqROCKjUt8h2nC1SlZS2k8Z_z10-qlaDN96a5hLFd2ffh32_A3hD24KoG1mUWScwQEl0pNPYRapkzpScbCLlISeX2cU0-TpLZ3swdBvtGbj6a2hH_aSmy_mH21-_P-OE_0QRJ4bsH23VrAi3KU6Y3IdDtEmSehlMeke_XZMlZZBkd_L9zkM7NqmF7r-7QG9ZqN3Tk1vm6PwhPOj9yHDcCf4R7Pn6MdzfQhd8AlfoEuLD4bjb5l-FVR1-qfq-N4vrrn4xnJi6Gnp4haYuwh--gwPHy6YMJ3RgbzEcn2sJuvaVJNzw1M_nq6cwPT_7eXoR9X0VIpcytY6sTlWMP7UueGytSZQ2VI3gTcaM8UxlnnvmE5QWwctbbj0vRZEWKS6GTlrxDA7qpvYvIExkaUVc2FQpkxSuMFpgxMhNwRW-TbAA3g-czV0POk69L-Y5Bh8kh3xbDgG83VAvOrCNf9CdkJA2NASR3f7RLK_yniO5YKn3ZVkK6ViCY7TCWS2ESQl1UTsdwDsScU6qhZ_kTF-PgAMjSKx8rBjlSJFjARwPWpAPCoqvpwpLpZQI4PXmNs5N2nAxtW9uOhpq6M3TAJ53SrP5ZoGOs5aaB6B21GlnULt36uq6xf-m8meNbH75P9hwBPc4-mmUJufyGA7Wyxv_Cv2stR3BvpzJERyenF1--z5qsxWjdlr9AUtkLN4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOFW9SChiJigOKGtvJJj4gtLRUW9rthVbaW7Adp420SpZmK8Sf4jcyk1d3heDW22bjRPbMZF4efwPwjrYFUTZG_shYiQFKqHwVBdZPcm51LsgmUh5yejqanIdfZ9FsA373Z2GorLLXiY2izipLOfI9yelEG8Zr8tPih09do2h3tW-h0YrFsfv1E0O2-uPRAfJ3V4jDL2f7E7_rKuDbiCdL36goCfCnUpkIjNFhojTV4js94lo7noyccNyFOFcCVzfCOJHLLMoiVAU2NhLfewfuouENKNiLZ_GQ0yEwejT3bX29lCrYM0VVE6RUEDYd0W4sX9Mg4G8zsGIH12s0V4ze4UPY6rxVNm7F6xFsuPIxPFjBMHwCF-h44sNs3BYT1Kwo2UHRdddZXLanJNlUl0XfKYzpMmPfXAs6jpdVzqZUFrjoi_SaAW2TTBIhtu_m8_opnN8KnZ_BZlmV7gWwMM6NDDITJYkOM5tpJTEuFToTCb5Ncg8-9JRNbQdtTh025imGOMSHdJUPHuwOoxctpMc_xn0mJg1jCIi7-aO6ukg7iqSSR87leS5jy0Nco5HWKCl1RNiOyioP3hOLU1IXOCWru1MPuDAC3krHCadMLFLMg51eCtJOj9TpjdR78Ha4jRqAtnV06arrdgy1DReRB89boRnmLNE9V7ESHiRr4rS2qPU7ZXHZoIzTIWuFZN7-_7zewL3J2fQkPTk6PX4J9wX6fJRyF_EObC6vrt0r9NmW5nXzoTD4fttf5h_Vxlen |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJwQLwxFFgkKg7Iir3r1x4QSptGLSVRBVTqzeyu162lyA5NKsRf49cx41cTIbj1lsQbax-z89id-T6At3QtiLIRuZE2AgOUQLoy9Iyb5L5ROSebSOeQ01l0eBp8OgvPtuB3VwtDaZWdTqwVdVYZOiMfCp8q2jBeE8O8TYs4GU8-Ln64xCBFN60dnUYjIsf2108M35Yfjsa41rucTw6-7R-6LcOAa0I_WblahomHH6XMuKe1ChKpKC_fqshXyvpJZLn1bYD9JqB1zbXlucjCLES1YGIt8L23YDumqGgA23sHs5Mv_QkPQdOj8W-y7YWQ3lAX1ZIApryg5ke7toM1XcDfRmHNKm5mbK6ZwMl9uNf6rmzUCNsD2LLlQ7i7hmj4CM7RDcU_s1GTWrBkRcnGRcu1s7hoaibZVJVFxxvGVJmxr7aBIMevVc6mlCS46FL26gYNZSYJFNu38_nyMZzeyEw_gUFZlfYZsCDOtfAyHSaJCjKTKSkwSuUq4wm-TfgOvO9mNjUt0DnxbcxTDHhoHdL1dXBgt2-9aAA-_tFujxapb0Ow3PUP1eV52s5IKvzQ2jzPRWz8AMeohdFSCBUS0qM00oF3tMQpKQ_sklFtDQQOjGC40lHi07kszpgDO50UpK1WWabXe8CBN_1j1Ad0yaNKW101bYhEnIcOPG2Epu-zQGddxpI7kGyI08agNp-UxUWNOU4l1xKn-fn_-_UabuOuTD8fzY5fwB2ODiCdv_N4Bwaryyv7Eh24lX7V7hQG3296c_4BbX1dQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+Dielectrophoretic+Manipulation+and+Separation+of+Microparticles+and+Biological+Cells&rft.jtitle=Biosensors+%28Basel%29&rft.au=Junzhu+Yao&rft.au=Kai+Zhao&rft.au=Jia+Lou&rft.au=Kaihuan+Zhang&rft.date=2024-08-27&rft.pub=MDPI+AG&rft.eissn=2079-6374&rft.volume=14&rft.issue=9&rft.spage=417&rft_id=info:doi/10.3390%2Fbios14090417&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_315eefff37c14a48b3cb933a513829c9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-6374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-6374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-6374&client=summon |