BMP7 alleviates trigeminal neuralgia by reducing oligodendrocyte apoptosis and demyelination

Background BMP7 has been shown to have neuroprotective effects and to alleviate demyelination. However, its role in trigeminal neuralgia (TN) has not been well investigated. The current study aims to determine whether BMP7 plays a role in demyelination, its effects on pain behaviors and mechanism of...

Full description

Saved in:
Bibliographic Details
Published inJournal of headache and pain Vol. 24; no. 1; p. 143
Main Authors Chen, Kai, Wei, Xiaojin, Wang, Ruixuan, Yang, Lin, Zou, Dingquan, Wang, Yaping
Format Journal Article
LanguageEnglish
Published Milan Springer Milan 24.10.2023
Springer Nature B.V
BMC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background BMP7 has been shown to have neuroprotective effects and to alleviate demyelination. However, its role in trigeminal neuralgia (TN) has not been well investigated. The current study aims to determine whether BMP7 plays a role in demyelination, its effects on pain behaviors and mechanism of action in rats with TN. Methods We used an infraorbital-nerve chronic-constriction injury (ION-CCI) to establish a rat model of TN. Adeno-associated viruses (AAVs) were injected into the rats to upregulate or downregulate BMP7. The mechanical withdrawal thresholds (MWT) of the injured rats were detected using Von Frey filaments. The changes in expression levels of BMP7 and oligodendrocyte (OL) markers were examined by western blotting, quantitative real-time PCR, immunofluorescence, and transmission electron microscopy. Results The ION-CCI induced mechanical allodynia, demyelination, and loss of OLs with a reduction of BMP7. Short-hairpin RNA (shRNA)-BMP7 that inhibited BMP7 expression also caused mechanical allodynia, demyelination, and loss of OLs, and its mechanism may be OL apoptosis. Overexpressing BMP7 in the trigeminal spinal subnucleus caudalis(VC) with AAV-BMP7 relieved all three phenotypes induced by the CCI, and its mechanism may be alleviating OLs apoptosis. Two signal pathways associated with apoptosis, STAT3 and p65, were significantly downregulated in the VC after CCI and rescued by BMP7 overexpression. Conclusion BMP7 can alleviate TN by reducing OLs apoptosis and subsequent demyelination. The mechanism behind this protection could be BMP7-mediated activation of the STAT3 and NF-κB/p65 signaling pathway and subsequent decrease in OL apoptosis. Importantly, our study presents clear evidence in support of BMP7 as a possible therapeutic target for the treatment of TN.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1129-2377
1129-2369
1129-2377
DOI:10.1186/s10194-023-01681-3