Thermal analysis of hydrogen bonded benzoic acid liquid crystals

Novel homologous series of supramolecular hydrogen bonded liquid crystals have been investigated. Hydrogen bonds are formed between p-n octyloxy benzoic acid and various p-n alkyloxy benzoic acids whose carbon chain length varied from pentyl to dodecyl. These complexes are characterized by Fourier t...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal analysis and calorimetry Vol. 113; no. 2; pp. 811 - 820
Main Authors Sathya Prabu, N. Pongali, Madhu Mohan, M. L. N.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.08.2013
Springer
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Novel homologous series of supramolecular hydrogen bonded liquid crystals have been investigated. Hydrogen bonds are formed between p-n octyloxy benzoic acid and various p-n alkyloxy benzoic acids whose carbon chain length varied from pentyl to dodecyl. These complexes are characterized by Fourier transform infrared spectroscopy, polarizing optical microscopy (POM), and differential scanning calorimetry (DSC). Phase diagram is constructed from POM and DSC data. The order of the phase transitions is determined by Navard and Cox ratio ( N R ). Characteristic phases like nematic, smectic C, and smectic F are identified. A new smectic ordering observed in this series is investigated by constructing phase diagram obtained from two binary mixtures of the present homologs. Inter-digitation of lamellar layers is observed to be one of the reasons for the occurrence of new smectic ordering. Optical tilt angle in smectic C phase is fitted to a power law. The magnitude of exponent of the power law is found to concur with the Mean Field theory predicted value.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1388-6150
1588-2926
1572-8943
DOI:10.1007/s10973-012-2812-6