Synchronization in collectively moving inanimate and living active matter

Whether one considers swarming insects, flocking birds, or bacterial colonies, collective motion arises from the coordination of individuals and entails the adjustment of their respective velocities. In particular, in close confinements, such as those encountered by dense cell populations during dev...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 5633 - 8
Main Authors Riedl, Michael, Mayer, Isabelle, Merrin, Jack, Sixt, Michael, Hof, Björn
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.09.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Whether one considers swarming insects, flocking birds, or bacterial colonies, collective motion arises from the coordination of individuals and entails the adjustment of their respective velocities. In particular, in close confinements, such as those encountered by dense cell populations during development or regeneration, collective migration can only arise coordinately. Yet, how individuals unify their velocities is often not understood. Focusing on a finite number of cells in circular confinements, we identify waves of polymerizing actin that function as a pacemaker governing the speed of individual cells. We show that the onset of collective motion coincides with the synchronization of the wave nucleation frequencies across the population. Employing a simpler and more readily accessible mechanical model system of active spheres, we identify the synchronization of the individuals’ internal oscillators as one of the essential requirements to reach the corresponding collective state. The mechanical ‘toy’ experiment illustrates that the global synchronous state is achieved by nearest neighbor coupling. We suggest by analogy that local coupling and the synchronization of actin waves are essential for the emergent, self-organized motion of cell collectives. Collective motion arises from the coordination of individuals and entails the adjustment of their respective velocities. Yet, how individuals achieve this coordination is often not understood. For migrating cells and motorized agents, Riedl et al. show that the synchronization of the intrinsic oscillator through nearest neighbour coupling establishes the necessary feedback leading to a uniform speed within the collective.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-41432-1