The effect of foot type on in-shoe plantar pressure during walking and running

Abstract The purpose of this study was to determine if low arch feet have altered plantar loading patterns when compared to normal feet during both walking and running. Fifty healthy subjects (34 normal feet, 16 flat feet) walked and ran five trials each at standard speeds. In-shoe pressure data wer...

Full description

Saved in:
Bibliographic Details
Published inGait & posture Vol. 28; no. 3; pp. 405 - 411
Main Authors Chuckpaiwong, Bavornrit, Nunley, James A, Mall, Nathan A, Queen, Robin M
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.10.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract The purpose of this study was to determine if low arch feet have altered plantar loading patterns when compared to normal feet during both walking and running. Fifty healthy subjects (34 normal feet, 16 flat feet) walked and ran five trials each at standard speeds. In-shoe pressure data were collected at 50 Hz. Contact area, peak pressure, maximum force, and force-time integral were analyzed in eight different regions of the foot. Foot type was determined by examining navicular height, arch angle, rearfoot angle, and a clinical score. A series of 2 × 2 repeated measures ANOVAs were used to determine statistical differences ( α < 0.05). A significant interaction existed between foot type and movement type for the maximum force in the medial midfoot. Total foot contact area, maximum force and peak pressure were significantly increased during running. Contact area in each insole area, except for the rearfoot, was significantly increased during running. Peak pressure and maximum force were significantly increased during running in each of the foot regions. However, the force-time integral was significantly decreased during running in the rearfoot, lateral midfoot, middle forefoot, and lateral forefoot. Significant differences between foot types existed for contact area in the medial midfoot and maximum force and peak pressure in the lateral forefoot. The maximum force and peak pressures were significantly decreased for the flat foot type. Therefore, individuals with a flat foot could be at a lower risk for lateral column metatarsal stress fractures, indicating that foot type should be assessed when determining an individual's risk for metatarsal stress fractures.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0966-6362
1879-2219
DOI:10.1016/j.gaitpost.2008.01.012