Versatile bubble maneuvering on photopyroelectric slippery surfaces

Contactless bubble manipulation with a high spatiotemporal resolution brings a qualitative leap forward in a variety of applications. Despite considerable advances, light-induced bubble maneuvering remains challenging in terms of robust transportation, splitting and detachment. Here, a photopyroelec...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 6158 - 8
Main Authors Zhan, Haiyang, Yuan, Zichao, Li, Yu, Zhang, Liang, Liang, Hui, Zhao, Yuhui, Wang, Zhiguo, Zhao, Lei, Feng, Shile, Liu, Yahua
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.10.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Contactless bubble manipulation with a high spatiotemporal resolution brings a qualitative leap forward in a variety of applications. Despite considerable advances, light-induced bubble maneuvering remains challenging in terms of robust transportation, splitting and detachment. Here, a photopyroelectric slippery surface (PESS) with a sandwich structure is constructed to achieve the versatile bubble manipulation. Due to the generated dielectric wetting and nonuniform electric field under the irradiation of near infrared (NIR) light, a bubble is subject to both the Laplace force and dielectrophoresis force, enabling a high-efficiency bubble steering. We demonstrate that the splitting, merging and detachment of underwater bubbles can be achieved with high flexibility and precision, high velocity and agile direction maneuverability. We further extend the capability of bubble control to microrobots for cargo transportation, micropart assembly and transmission of gear structures. We envision this robust bubble manipulation strategy on the PESS would provide a valuable platform for various bubble-involved processes, ranging from microfluidic devices to soft robotics. Light-induced bubble maneuvering remains challenging in terms of response and functional adaptability due to the single driving mechanism including the Marangoni effect or asymmetrical deformation. Using a photopyroelectric slippery surface (PESS), Liu et al. demonstrate the splitting, merging, and detachment of underwater bubbles with high flexibility and precision.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-41918-y