Autecological properties of soil sphingomonads involved in the degradation of polycyclic aromatic hydrocarbons

Autecological properties that are thought to be important for polycyclic aromatic hydrocarbon (PAH)-degradation by bacteria in contaminated soils include the ability to utilize a broad range of carbon sources, efficient biofilm formation, cell-surface hydrophobicity, surfactant production, motility,...

Full description

Saved in:
Bibliographic Details
Published inApplied microbiology and biotechnology Vol. 72; no. 5; pp. 1083 - 1089
Main Authors Cunliffe, Michael, Kertesz, Michael A
Format Journal Article
LanguageEnglish
Published Berlin Berlin/Heidelberg : Springer-Verlag 01.10.2006
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Autecological properties that are thought to be important for polycyclic aromatic hydrocarbon (PAH)-degradation by bacteria in contaminated soils include the ability to utilize a broad range of carbon sources, efficient biofilm formation, cell-surface hydrophobicity, surfactant production, motility, and chemotaxis. Sphingomonas species are common PAH-degraders, and a selection of PAH-degrading sphingomonad strains isolated from contaminated soils was therefore characterized in terms of these properties. All the sphingomonads tested were relatively hydrophilic and were able to grow as biofilms on a phenanthrene-coated surface, though biofilm formation under other conditions was variable. Sphingobium yanoikuyae B1 was able to utilize the greatest range of carbon sources, though it was not chemotaxic towards any of the substrates tested. Other sphingomonad strains were considerably less flexible in their catabolic range. None of the strains produced detectable surfactant and swimming motility varied between the strains. Examination of the total Sphingomonas community in the soils tested showed that one of the isolates studied was present at significant levels, suggesting that it can thrive under PAH-contaminated conditions despite the lack of many of the tested characteristics. We conclude that these properties are not essential for survival and persistence of Sphingomonas in PAH-contaminated soils.
Bibliography:http://dx.doi.org/10.1007/s00253-006-0374-x
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-006-0374-x