High-Resolution Mobile Monitoring of Carbon Monoxide and Ultrafine Particle Concentrations in a Near-Road Environment

Assessment of near-road air quality is challenging in urban environments that have roadside structures, elevated road sections, or depressed roads that may impact the dispersion of traffic emissions. Vehicles traveling on arterial roadways may also contribute to air pollution spatial variability in...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Air & Waste Management Association (1995) Vol. 60; no. 3; pp. 328 - 336
Main Authors Hagler, Gayle S.W., Thoma, Eben D., Baldauf, Richard W.
Format Journal Article
LanguageEnglish
Published Pittsburgh, PA Taylor & Francis Group 01.03.2010
Air & Waste Management Association
Air and Waste Management Association
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Assessment of near-road air quality is challenging in urban environments that have roadside structures, elevated road sections, or depressed roads that may impact the dispersion of traffic emissions. Vehicles traveling on arterial roadways may also contribute to air pollution spatial variability in urban areas. To characterize the nature of near-road air quality in a complex urban environment, an instrumented all-electric vehicle was deployed to perform high spatial- and temporal-resolution mapping of ultra-fine particles (UFPs, particle diameter <100 nm) and carbon monoxide (CO). Sampling was conducted in areas surrounding a highway in Durham, NC, with multiple repeats of the driving route accomplished within a morning or evening commute time frame. Six different near-road transects were driven, which included features such as noise barriers, vegetation, frontage roads, and densely built houses. Under downwind conditions, median UFP and CO levels in near-road areas located 20-150 m from the highway were a factor of 1.8 and 1.2 higher, respectively, than in areas characterized as urban background. Sampling in multiple near-road neighborhoods during downwind conditions revealed significant variability in absolute UFP and CO concentrations as well as in the rate of concentration attenuation with increasing distance from the highway. During low-speed meandering winds, regional UFP and CO concentrations nearly doubled relative to crosswind conditions; however, near-road UFP levels were still higher than urban background levels by a factor of 1.2, whereas near-road CO concentrations were not significantly different than the urban background.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1096-2247
2162-2906
DOI:10.3155/1047-3289.60.3.328