Electron beam driven ion-acoustic solitary waves in plasmas with two kappa-distributed electrons

Formation and the basic features of arbitrary amplitude ion-acoustic solitary waves (IASWs) in a plasma consisting of warm positive ions, two κ -distributed electrons and an electron beam are investigated by using the Sagdeev pseudopotential approach. It is shown that the soliton existence domain (M...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; p. 16363
Main Author Hatami, M. M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 29.09.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Formation and the basic features of arbitrary amplitude ion-acoustic solitary waves (IASWs) in a plasma consisting of warm positive ions, two κ -distributed electrons and an electron beam are investigated by using the Sagdeev pseudopotential approach. It is shown that the soliton existence domain (Mach number limits) sensitively depends on temperature of ions, spectral index of cool electrons and concentration of hot electron species while spectral index of hot electrons, hot-to-cool electron temperature ratio and also concentration of electron beam do not considerably affect this domain. It is also found that temperature of electron beam only affect the existence domain of rarefactive solitons. Furthermore, it is shown that considered plasma medium supports the coexistence of positive and negative IASWs. Moreover, effect of different plasma parameters such as hot-to-cool electron density ratio, ion-to-cool electron temperature ratio, beam-to-ion density ratio, hot-to-cool electron temperature ratio and superthermality index of electron species on the basic features of positive and negative IASWs is investigated numerically. Finally, the effect of plasma parameters on the parametric regime of coexistence of compressive and rarefactive IASWs is studied and, for example, effect of temperature of positive ions and number density of hot electrons on polarity of IASWs is numerically investigated.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-43422-1