Quantitative Classification of Eyes with and without Intermediate Age-related Macular Degeneration Using Optical Coherence Tomography

Objective To define quantitative indicators for the presence of intermediate age-related macular degeneration (AMD) via spectral-domain optical coherence tomography (SD-OCT) imaging of older adults. Design Evaluation of diagnostic test and technology. Participants and Controls One eye from 115 elder...

Full description

Saved in:
Bibliographic Details
Published inOphthalmology (Rochester, Minn.) Vol. 121; no. 1; pp. 162 - 172
Main Authors Farsiu, Sina, PhD, Chiu, Stephanie J., BS, O'Connell, Rachelle V., BS, Folgar, Francisco A., MD, Yuan, Eric, BS, Izatt, Joseph A., PhD, Toth, Cynthia A., MD
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objective To define quantitative indicators for the presence of intermediate age-related macular degeneration (AMD) via spectral-domain optical coherence tomography (SD-OCT) imaging of older adults. Design Evaluation of diagnostic test and technology. Participants and Controls One eye from 115 elderly subjects without AMD and 269 subjects with intermediate AMD from the Age-Related Eye Disease Study 2 (AREDS2) Ancillary SD-OCT Study. Methods We semiautomatically delineated the retinal pigment epithelium (RPE) and RPE drusen complex (RPEDC, the axial distance from the apex of the drusen and RPE layer to Bruch's membrane) and total retina (TR, the axial distance between the inner limiting and Bruch's membranes) boundaries. We registered and averaged the thickness maps from control subjects to generate a map of "normal" non-AMD thickness. We considered RPEDC thicknesses larger or smaller than 3 standard deviations from the mean as abnormal, indicating drusen or geographic atrophy (GA), respectively. We measured TR volumes, RPEDC volumes, and abnormal RPEDC thickening and thinning volumes for each subject. By using different combinations of these 4 disease indicators, we designed 5 automated classifiers for the presence of AMD on the basis of the generalized linear model regression framework. We trained and evaluated the performance of these classifiers using the leave-one-out method. Main Outcome Measures The range and topographic distribution of the RPEDC and TR thicknesses in a 5-mm diameter cylinder centered at the fovea. Results The most efficient method for separating AMD and control eyes required all 4 disease indicators. The area under the curve (AUC) of the receiver operating characteristic (ROC) for this classifier was >0.99. Overall neurosensory retinal thickening in eyes with AMD versus control eyes in our study contrasts with previous smaller studies. Conclusions We identified and validated efficient biometrics to distinguish AMD from normal eyes by analyzing the topographic distribution of normal and abnormal RPEDC thicknesses across a large atlas of eyes. We created an online atlas to share the 38 400 SD-OCT images in this study, their corresponding segmentations, and quantitative measurements.
Bibliography:A full listing of the AREDS2 Ancillary SD-OCT Study Group is available at http://aaojournal.org.
ISSN:0161-6420
1549-4713
DOI:10.1016/j.ophtha.2013.07.013