A tautomerized ligand enabled meta selective C–H borylation of phenol

Remote meta selective C–H functionalization of aromatic compounds remains a challenging problem in chemical synthesis. Here, we report an iridium catalyst bearing a bidentate pyridine-pyridone (PY-PYRI) ligand framework that efficiently catalyzes this meta selective borylation reaction. We demonstra...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; p. 6906
Main Authors Guria, Saikat, Hassan, Mirja Md Mahamudul, Ma, Jiawei, Dey, Sayan, Liang, Yong, Chattopadhyay, Buddhadeb
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 30.10.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Remote meta selective C–H functionalization of aromatic compounds remains a challenging problem in chemical synthesis. Here, we report an iridium catalyst bearing a bidentate pyridine-pyridone (PY-PYRI) ligand framework that efficiently catalyzes this meta selective borylation reaction. We demonstrate that the developed concept can be employed to introduce a boron functionality at the remote meta position of phenols, phenol containing bioactive and drug molecules, which was an extraordinary challenge. Moreover, we have demonstrated that the method can also be applied for the remote C6 borylation of indole derivatives including tryptophan that was the key synthetic precursor for the total synthesis of Verruculogen and Fumitremorgin A alkaloids. The inspiration of this catalytic concept was started from the O–Si secondary interaction, which by means of several more detailed control experiments and detailed computational investigations revealed that an unprecedented Bpin shift occurs during the transformation of iridium bis(boryl) complex to iridium tris(boryl) complex, which eventually control the remote meta selectivity by means of the dispersion between the designed ligand and steering silane group. Remote meta selective C–H Functionalization of aromatic compounds remains challenging in chemical synthesis. Here, the authors report an iridium catalyst bearing a bidentate pyridine-pyridone ligand framework that efficiently catalyzes this meta selective borylation reaction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-42310-6