Probabilistic disease progression modeling to characterize diagnostic uncertainty: Application to staging and prediction in Alzheimer's disease
Disease progression modeling (DPM) of Alzheimer's disease (AD) aims at revealing long term pathological trajectories from short term clinical data. Along with the ability of providing a data-driven description of the natural evolution of the pathology, DPM has the potential of representing a va...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 190; pp. 56 - 68 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.04.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Disease progression modeling (DPM) of Alzheimer's disease (AD) aims at revealing long term pathological trajectories from short term clinical data. Along with the ability of providing a data-driven description of the natural evolution of the pathology, DPM has the potential of representing a valuable clinical instrument for automatic diagnosis, by explicitly describing the biomarker transition from normal to pathological stages along the disease time axis. In this work we reformulated DPM within a probabilistic setting to quantify the diagnostic uncertainty of individual disease severity in an hypothetical clinical scenario, with respect to missing measurements, biomarkers, and follow-up information. We show that the staging provided by the model on 582 amyloid positive testing individuals has high face validity with respect to the clinical diagnosis. Using follow-up measurements largely reduces the prediction uncertainties, while the transition from normal to pathological stages is mostly associated with the increase of brain hypo-metabolism, temporal atrophy, and worsening of clinical scores. The proposed formulation of DPM provides a statistical reference for the accurate probabilistic assessment of the pathological stage of de-novo individuals, and represents a valuable instrument for quantifying the variability and the diagnostic value of biomarkers across disease stages. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2017.08.059 |