GToTree: a user-friendly workflow for phylogenomics

Abstract Summary Genome-level evolutionary inference (i.e. phylogenomics) is becoming an increasingly essential step in many biologists’ work. Accordingly, there are several tools available for the major steps in a phylogenomics workflow. But for the biologist whose main focus is not bioinformatics,...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 35; no. 20; pp. 4162 - 4164
Main Author Lee, Michael D
Format Journal Article
LanguageEnglish
Published England Oxford University Press 15.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Summary Genome-level evolutionary inference (i.e. phylogenomics) is becoming an increasingly essential step in many biologists’ work. Accordingly, there are several tools available for the major steps in a phylogenomics workflow. But for the biologist whose main focus is not bioinformatics, much of the computational work required—such as accessing genomic data on large scales, integrating genomes from different file formats, performing required filtering, stitching different tools together etc.—can be prohibitive. Here I introduce GToTree, a command-line tool that can take any combination of fasta files, GenBank files and/or NCBI assembly accessions as input and outputs an alignment file, estimates of genome completeness and redundancy, and a phylogenomic tree based on a specified single-copy gene (SCG) set. Although GToTree can work with any custom hidden Markov Models (HMMs), also included are 13 newly generated SCG-set HMMs for different lineages and levels of resolution, built based on searches of ∼12 000 bacterial and archaeal high-quality genomes. GToTree aims to give more researchers the capability to make phylogenomic trees. Availability and implementation GToTree is open-source and freely available for download from: github.com/AstrobioMike/GToTree. It is implemented primarily in bash with helper scripts written in python. Supplementary information Supplementary data are available at Bioinformatics online.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1367-4803
1367-4811
1460-2059
1367-4811
DOI:10.1093/bioinformatics/btz188