The surface urban heat island in the city of Brno (Czech Republic) derived from land surface temperatures and selected reasons for its spatial variability
Thermal infrared images from Landsat satellites are used to derive land surface temperatures (LST) and to calculate the intensity of the surface urban heat island (UHI) during the summer season in and around the city of Brno (Czech Republic). Overall relief, land use structure, and the distribution...
Saved in:
Published in | Theoretical and applied climatology Vol. 112; no. 1-2; pp. 89 - 98 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.04.2013
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Thermal infrared images from Landsat satellites are used to derive land surface temperatures (LST) and to calculate the intensity of the surface urban heat island (UHI) during the summer season in and around the city of Brno (Czech Republic). Overall relief, land use structure, and the distribution of built-up areas determine LST and UHI spatial variability in the study area. Land-cover classes, amount and vigor of vegetation, and density of built-up areas are used as explanatory variables. The highest LST values typically occur in industrial and commercial areas, which contribute significantly to surface UHI intensity. The intensity of surface UHI, defined as the difference between mean LST for urban and rural areas, reached 4.2 and 6.7 °C in the two images analyzed. Analysis of two surface characteristics in terms of the amount of vegetation cover, represented by normalized difference vegetation index, demonstrates the predominance of LST variability (56–67 % of explained variance) over the degree of urbanization as represented by density of buildings (37–40 % of LST variance). |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0177-798X 1434-4483 |
DOI: | 10.1007/s00704-012-0717-8 |