Efficient Malaria Parasite Detection From Diverse Images of Thick Blood Smears for Cross-Regional Model Accuracy

Goal : The purpose of this work is to improve malaria diagnosis efficiency by integrating smartphones with microscopes. This integration involves image acquisition and algorithmic detection of malaria parasites in various thick blood smear (TBS) datasets sourced from different global regions, includ...

Full description

Saved in:
Bibliographic Details
Published inIEEE open journal of engineering in medicine and biology Vol. 4; pp. 226 - 233
Main Authors Zhong, Yuming, Dan, Ying, Cai, Yin, Lin, Jiamin, Huang, Xiaoyao, Mahmoud, Omnia, Hald, Eric S., Kumar, Akshay, Fang, Qiang, Mahmoud, Seedahmed S.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Goal : The purpose of this work is to improve malaria diagnosis efficiency by integrating smartphones with microscopes. This integration involves image acquisition and algorithmic detection of malaria parasites in various thick blood smear (TBS) datasets sourced from different global regions, including low-quality images from Sub-Saharan Africa. Methods: This approach combines image segmentation and a convolutional neural network (CNN) to distinguish between white blood cells, artifacts, and malaria parasites. A portable system integrates a microscope with a graphical user interface to facilitate rapid malaria detection from smartphone images. We trained the CNN model using open-source data from the Chittagong Medical College Hospital, Bangladesh. Results: The validation process, using microscopic TBS from both the training dataset and an additional dataset from Sub-Saharan Africa, demonstrated that the proposed model achieved an accuracy of 97.74% ± 0.05% and an F1-score of 97.75% ± 0.04%. Remarkably, our proposed model with AlexNet surpasses the reported literature performance of 96.32%. Conclusions: This algorithm shows promise in aiding malaria-stricken regions, especially those with limited resources.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2644-1276
2644-1276
DOI:10.1109/OJEMB.2023.3328435