Construction of double reaction zones for long-life quasi-solid aluminum-ion batteries by realizing maximum electron transfer

Achieving high energy density and long cycling life simultaneously remains the most critical challenge for aluminum-ion batteries (AIBs), especially for high-capacity conversion-type positive electrodes suffering from shuttle effect in strongly acidic electrolytes. Herein, we develop a layered quasi...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 5596 - 11
Main Authors Yu, Zhijing, Wang, Wei, Zhu, Yong, Song, Wei-Li, Huang, Zheng, Wang, Zhe, Jiao, Shuqiang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.09.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Achieving high energy density and long cycling life simultaneously remains the most critical challenge for aluminum-ion batteries (AIBs), especially for high-capacity conversion-type positive electrodes suffering from shuttle effect in strongly acidic electrolytes. Herein, we develop a layered quasi-solid AIBs system with double reaction zones (DRZs, Zone 1 and Zone 2) to address such issues. Zone 1 is designed to accelerate reaction kinetics by improving wetting ability of quasi-solid electrolyte to active materials. A composite three-dimensional conductive framework (Zone 2) interwoven by gel network for ion conduction and carbon nanotube network as electronic conductor, can fix the active materials dissolved from Zone 1 to allow for continuing electrochemical reactions. Therefore, a maximum electron transfer is realized for the conversion-type mateials in DRZs, and an ultrahigh capacity (400 mAh g −1 ) and an ultralong cycling life (4000 cycles) are achieved. Such strategy provides a new perspective for constructing high-energy-density and long-life AIBs. Achieving high energy density and long cycling life simultaneously remains a critical challenge for aluminum-ion batteries. Here, the authors develop a layered quasi-solid battery with double reaction zones to suppress shuttle effect of conversion-type materials and improve both energy density and cycling life.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-41361-z