Three-dimensional vertical structural electrochemical random access memory for high-density integrated synapse device
Three-terminal (3T) structured electrochemical random access memory (ECRAM) has been proposed as a synaptic device based on improved synaptic characteristics. However, the proposed 3T ECRAM has a larger area requirement than 2T synaptic devices; thereby limiting integration density. To overcome this...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; p. 14325 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
31.08.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Three-terminal (3T) structured electrochemical random access memory (ECRAM) has been proposed as a synaptic device based on improved synaptic characteristics. However, the proposed 3T ECRAM has a larger area requirement than 2T synaptic devices; thereby limiting integration density. To overcome this limitation, this study presents the development of a high-density vertical structure for the 3T ECRAM. In addition, complementary metal-oxide semiconductor (CMOS)-compatible materials and 8-inch wafer-based CMOS fabrication processes were utilized to verify the feasibility of mass production. The achievements of this work demonstrate the potential for high-density integration and mass production of 3T ECRAM devices. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-41202-5 |