Anisotropy in spinodal-like dynamics of unknown water at ice V–water interface

Experimentally demonstrating the existence of waters with local structures unlike that of common water is critical for understanding both the origin of the mysterious properties of water and liquid polymorphism in single component liquids. At the interfaces between water and ices I h , III, and VI g...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; p. 16227
Main Authors Niinomi, Hiromasa, Yamazaki, Tomoya, Nada, Hiroki, Hama, Tetsuya, Kouchi, Akira, Oshikiri, Tomoya, Nakagawa, Masaru, Kimura, Yuki
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.10.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Experimentally demonstrating the existence of waters with local structures unlike that of common water is critical for understanding both the origin of the mysterious properties of water and liquid polymorphism in single component liquids. At the interfaces between water and ices I h , III, and VI grown/melted under pressure, we previously discovered low- and high-density unknown waters, that are immiscible with the surrounding water. Here, we show, by in-situ optical microscopy, that an unknown water appears at the ice V–water interface via spinodal-like dynamics. The dewetting dynamics of the unknown water indicate that its characteristic velocity is ~ 90 m/s. The time evolution of the characteristic length of the spinodal-like undulation suggests that the dynamics may be described by a common model for spinodal decomposition of an immiscible liquid mixture. Spinodal-like dewetting dynamics of the unknown water transiently showed anisotropy, implying the property of a liquid crystal.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-43295-4